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Abstract  

Purpose: To assess the likelihood of local recurrence of lung malignancies following stereotactic ablative radiotherapy 

(SABR) by evaluating clinical and radiomic features with machine learning and novel use of deep learning methods. 

Methods: Pre-treatment CT images were obtained from 70 patients with primary lung malignancies. The malignancy 

was segmented by the treating radiation oncologist, and 107 radiomic features were extracted from the image. The 

data underwent feature reduction via Spearman’s correlation and selection with adapted least absolute shrinkage and 

selection operator regression analysis. A random forest model and a multi-layer perceptron (MLP) with a cost-sensitive 

classifier were independently used to assess for the local recurrence of malignancy. The recurrence likelihood 

predictions from each of these were used to stratify patients into groups with a high and low risk of recurrence. These 

were assessed for time-to-event predictions using Kaplan–Meier analyses and Gray’s test to evaluate the separation 

between the high- and low-risk groups. The prognostic capacity of the models was evaluated with a concordance index, 

95% confidence intervals and bootstrapping (10,000 iterations). 

Results: In the context of a small sample size, the MLP was able to predict the recurrence of malignancy with 100% 

sensitivity and 91% specificity (area under the receiver operating characteristic curve 0.95). The MLP predictions 

showed a statistically significant separation of high- and low-risk patients, and a robust model fit (p=0.04, c=0.79), 

which outperformed random forest model predictions (p=0.15, c=0.41) that did not reach statistical significance. 

Conclusions: Radiomic data analysis with an MLP showed improved prediction potential within this dataset compared 

to random forest models for predicting the endpoint. More studies with larger populations and a longer duration of 

follow-up are required to further assess the functionality of these methods of analysis for predicting the local recurrence 

of lung cancer after SABR. 

Keywords: radiomics, machine learning, artificial intelligence, artificial neural network, lung cancer, local treatment 

failure, SABR 
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1   Introduction 

Lung cancer is the leading global cause of cancer-related 

deaths [1]. Stereotactic ablative radiotherapy (SABR) is a 

current pillar of lung cancer treatment that enables some 

patients to avoid surgery and allows others who are non-

surgical candidates to access curative treatment. SABR is 

very effective for treating early-stage lung cancer and leads 

to the remission rates of 90%–95% [2].  Patients at a higher 

risk of local recurrence would benefit from alterations to 

their treatment regime such as modified radiotherapy dosing, 

surgical management, the addition of adjuvant therapy or 

closer follow-up. Predicting which patients will experience 

local recurrence through clinical means is difficult and often 

inaccurate [4]. This paper discusses image analysis with 

radiomics and artificial intelligence (AI) as an alternate 

means of identifying high-risk patients to enable early 

adaptations to be made to their care [5]. 

† The trained MLP is available on the author’s GitHub at github.com/allijan45. 
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Radiomic feature extraction allows a large number of 

features in images to be measured and analysed using 

predefined algorithms that produce a quantitative output 

representing  markers of density, intensity, fine texture, 

coarse texture and morphology [5]. An explanation of these 

features is available in Appendix 1. Using radiomic features 

enables the analysis of characteristics of the region of 

interest (ROI) that are not able to be accurately assessed by 

gross inspection and aids in the identification of clinically 

significant, non-obvious patterns. The analysis of radiomic 

features with AI facilitates the construction of models that 

can be trained to predict the study endpoint [4]. For the 

purpose of reporting radiomics results with the highest 

possible utility, this paper employs a standardised set of 

features that are compliant with the Imaging Biomarker 

Standardisation Initiative (IBSI) and reports the statistical 

analysis in accordance with best-practice guidelines 

recommended by the Radiomics Quality Score [6]. 

The findings of the previous literature are shown in 

Appendix 2 [1,2,4,7–9]. Four of these studies identified the 

markers of the local recurrence of lung cancer with varying 

levels of significance. Only one of the six studies identified 

was able to predict local recurrence using a model with a 

combination of CT and PET radiomic features [2]. Five of 

these six papers focused on their other endpoints, such as 

overall survival, which they were all able to predict more 

accurately due to the higher incidence of events. The use of 

overall survival as analogous to treatment failure in a cohort 

with a high expected cure rate and who are likely to be 

elderly and have other comorbidities can cause the 

overprediction of results and impact bias. Despite the 

practical limitations in predicting local recurrence, focusing 

on it as an endpoint could potentially have a higher clinical 

utility than overall survival due to the opportunity to change 

patient management with a goal of preventing treatment 

failure. The existing literature confirms a known machine 

learning consensus: it can be very difficult to predict results 

in unbalanced data (data with a low number of events, e.g. 

5% recurrence rates). 

This paper will demonstrate an alternate approach to 

predicting the recurrence of lung cancer after SABR with the 

use of two methods of AI: machine learning with a random 

forest model and deep learning with a multi-layer perceptron 

(MLP). A random forest model is a type of supervised 

machine learning that generates hundreds of decision trees 

to average the results and predict the most likely outcome. 

Deep learning is an intricate structure of advanced 

algorithms that identify patterns and trains itself to interpret 

outputs through complex model construction. An MLP is a 

type of deep learning that uses several layers to train the 

neurons within an artificial neural network. The comparison 

between the machine learning and deep learning methods on 

the same patient population will serve to demonstrate a novel 

method of predicting local recurrence. 

2   Methods 

2.1   Participant Characteristics 
Participant selection occurred at two sites within the 

Illawarra Shoalhaven Local Health District. Participant data 

were pooled, and no distinction between sites was made. All 

patients provided individual consent for the future use of 

their deidentified medical data in research. This study was 

approved by the institutional research ethics committee. 

Inclusion criteria were patients aged over 18 who underwent 

SABR treatment for early-stage, primary lung cancer in the 

health district between 2017 and 2020. Exclusion criteria 

were participants who had recurrences after surgery, 

metastatic cancers, or who did not have complete, structured 

clinical data characteristics. Participants were classified as 

having either no local failure or local failure, which was 

defined as a recurrence of malignancy within 2 cm of the 

initial gross tumour volume (GTV). Local failure was 

confirmed radiologically by the treating radiation 

oncologist. 

2.2   CT Imaging and Malignancy Contouring 
The free-breathing, non-contrast, pre-treatment CT 

images of all patients were acquired with Siemens 

SOMATOM Confidence CT scanners (120 kv, 2 mm slices). 

The scanners were calibrated with identical protocols to 

minimise inter-scanner variance. 

There were two methods of delineation used in this paper: 

manual and to voxel value. Manual delineation was done in 

Pinnacle 3D® [10], and auto-contouring to voxel value 

segmentation was performed in OnkoDICOM [11]. In CT 

imaging, the voxel value of the normal lung is known to be 

between 100 and 400, which can be used to find an exact 

border of normal tissue. Each contour was verified by a 

single radiation oncologist prior to radiomic feature 

extraction. 

2.3   Radiomic Feature Extraction 
A total of 107 radiomic features were extracted from the 

images using OnkoDICOM. All the features extracted are 

part of the Pyradiomics Python library of features, and all 

comply with algorithms defined by IBSI. 

2.4   Feature Reduction and Selection 
Feature reduction was used to reduce model complexity 

and to minimise the number of parameters tested to avoid 

collinearity, overfitting the data and developing overly 

optimistic results. The data were normalised to aggregate the 

scales by converting all values to a z-score. A Spearman’s 

rank correlation coefficient was calculated on each value to 

determine similarity to other values [12]. A correlation 

coefficient >0.90 was deemed “very strong,” and, as such, 

all variables with a high correlation to other variables were 

removed. The feature that was removed was chosen based 

on which of the two interacting variables had very strong 

correlation with the highest number of other variables. 

Variable regularisation and selection were performed 

with an adaptive least absolute shrinkage and selection 
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operator (LASSO) regression analysis. The method 

penalises binomial logistic regression by shrinking 

coefficient magnitudes towards zero if they are not strongly 

associated with the outcome. The adaptive LASSO has 

oracle properties and counteracts known biases in regular 

LASSO by weighting the coefficients used. Features that 

failed to show importance in the adaptive LASSO analysis 

were removed. 

As the existing literature shows the superiority of 

combined clinical/radiomic feature modelling to separate 

models [9,13,14], all models were built with a combination 

of radiomic features and clinical features. 

2.5   Random Survival Forest Model 
The eight radiomic features significant for local 

recurrence and the nine clinical features were used to 

construct a random forest–supervised machine learning 

algorithm in RStudio [15] using the programming language 

R [16]. Random forest models perform better without noisy 

data, which was the reason for the use of the reduced set of 

radiomic features. All of the R packages used are listed in 

Appendix 3. The data were randomly partitioned into a 

training set (70% of the data) and a testing set (30%). The 

model hyperparameters mtry, the number of trees, and 

minimum node size were optimised with a grid search to 

improve the robustness of the model. Using the optimal 

hyperparameters, the model was trained and then run on the 

test data with the aim of predicting which participants in the 

test group would develop local recurrence. 

2.6   Multilayer Perceptron Model 
An MLP was built in Weka 3.8.5 [17]. The MLP used a 

cost-sensitive classifier with a 2 × 2 cost matrix penalising 

false negatives at 14 times the cost of a false positive and no 

penalty for true positives or true negatives. The classifier 

DL4jMlp [18] was used with two hidden layers: one dense 

layer with an ActivationReLU activation function and eight 

outputs, and an output layer with an ActivationSigmoid 

activation function, a LossBinaryXCENT loss function and 

one output. The MLP was created to run with eight epochs 

and an early stopping function to cease computations after 

two epochs with no improvement in results as a 

regularisation method to avoid model overfitting. Other 

regularisation methods included the use of a dropout layer to 

ensure that the multiple internal representations of the 

endpoint were learned by the model, and the addition of 

random noise to improve error generalisation and structure 

mapping. Stochastic gradient descent was used for the 

optimisation algorithm with no gradient normalisation 

method used.  

The input layers consisted of all of the 107 radiomic 

features and the nine clinical features. The output layer was 

Table 1: Comparison of Random Forest vs MLP. Optimisation and training explanations are unique to this 
method. Implementation of the methodology including the code used can be seen in Appendix 4. 

 Random Forest model Multilayer Perceptron model 

Concept Supervised machine learning that generates 

hundreds of decision trees and averages results 

to predict the most likely outcome. 

Deep learning within an artificial neural network 

that trains itself to predict patterns and outputs 

through using algorithms in hidden layers. 

Depiction  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Optimisation Hyperparameters (number of decision trees, 

number of features sampled at each branch, and 

tree complexity) were optimised through use of a 

grid search to minimise error or maximise the 

model fit. 

Stochastic gradient descent: model runs through 

and calculates error between the predicted and 

actual outcome and continues the epochs of model 

while changing parameters to minimise errors in 

output. Early stopping, dropout and random noise 

for regularisation. 

Training Model was trained on 70% of the data and tested 

on 30% of the data. 

Model used 10 folds of cross-validation: model 

repeatedly splits into several training/validation 

datasets to allow the use of all data for training. 
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a sigmoid function with one neuron that classified patients 

as a number between 0 (no local recurrence) or 1 (local 

recurrence).  

The training of the MLP was performed with 10 folds of 

cross-validation and the model was assessed with an area 

under the receiver operating characteristic curve (AUC). 

Random forests and MLPs were the only types of machine 

learning models built for this paper. MLP hyperparameters 

were altered to adjust model output in accordance with 

standard practices. Most MLP changes between models were 

the internal adjustments of the weights and biases of inputs 

through the use of stochastic gradient descent. 

The prediction results from the random forest model and 

the MLP were used to stratify the participants into high- and 

low-risk groups around the median [19]. This part of the 

method was performed separately to the model’s case 

recurrence predictions. The random forest model and the 

MLP both classified how likely someone was to develop 

local recurrence, and the 35 participants with the highest risk 

from each model output (regardless of whether the model 

predicted local recurrence or not) were classified as “high 

risk” and the lowest 35 were classified as “low risk.” This 

Table 2: Participant clinical characteristics: Ordinal data are displayed as a median or as median, (range), 
nominal data are depicted as the total number (percentages of cohort). 

 Total (n=70) Local Failure (n=3) No Local Failure (n=67) 

Size (mm) 19.5 (7–46) 25.6 19.2 

GTVp (ml) 5.97 (0.85–21.9) 9.24 5.83 

SUVp 5.91 (1.3–19.8) 7.53 5.72 

Radiation dose (Gy) 

     BED For Prescription 108 (52.5–151.2) 105.6 108.1 

     BED of PTV max 106.2 (52.8–325.8) 102.4 106.4 

     BED of PTV min 177.3 (79.4–461.3) 164.2 178.6 

Age at diagnosis 73.68 (45.11–92.79) 70.14 73.9 

Gender 

     Female 43 (61%) 1 (33%) 42 (64%) 

     Male 27 (38%) 2 (67%) 25 (36%) 

Grade 

     1 11 (16%) 0 11 (16%) 

     2 19 (27%) 1 (33%) 18 (28%) 

     Unknown 40 (57%) 2 (67%) 38 (56%) 

Location 

     Upper lobe 37 (53%) 1 (33%) 36 (55%) 

     Middle lobe 6 (9%) 0 6 (9%) 

     Lower lobe 27 (38%) 2 (67%) 25 (36%) 

Histology 

     Adenocarcinoma 45 (64%) 1 (33%) 44 (66%) 

     Squamous cell carcinoma 13 (19%) 1 (33%) 12 (18%) 

     Other 12 (17%) 1 (33%) 11 (16%) 

Duration of follow-up (years) 1.93 (0.41–4.1) 1.43 1.95 
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conservative risk group determination was done specifically 

to prevent the reporting of overly optimistic results in 

accordance with the Radiomics Quality Score [6]. The high- 

and low-risk groups were assessed on Kaplan–Meier plots 

[20] for time-to-event prediction, and the significance of 

separation of the groups was assessed with Gray’s test [21]. 

The model fit was analysed with an adjusted Harrel’s 

concordance index (c-index) [22]. The accuracy of 

predictions was evaluated with 95% confidence intervals 

(Cis) with 10,000 iterations of bootstrapping. 

3.   Results  

3.1   Participant Characteristics  
A total of 70 participants were eligible for this study 

between the two sites. The median age of patients at 

diagnosis was 73 years, and there were 43 female and 27 

male patients. Patients were treated with a mean BED for a 

prescription of 108 Gy, and the median duration of treatment 

was 8 days. The mean duration of follow-up was 1.93 years. 

Three cases of local failure were identified (4.2%). 

3.2   Feature Reduction and Selection 
Of the 107 radiomic features evaluated, 57 were removed 

for having inter-feature correlation >90%. There was no 

significant correlation of any clinical features with any 

radiomic features, and thus, none of these were removed 

from the analysis. The adaptive LASSO analysis selected 

eight radiomic features that were significant for the local 

Figure 1 – Significance of Radiomic Features in Adaptive LASSO. Figure 1 depicts the significance various features 

had compared to the endpoint of local recurrence after adaptive LASSO selection. Glcm_InverseVariance, 

firstorder_RootMeanSquared, and glcm_lmc2 were the most significant features. A full list of features is in Appendix 

1 and features not listed in the figure had a significance of “0” on Adaptive LASSO. 
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Table 3 – Features used in AI modelling. Clinical features were selected based on the completion of structured datasets 

within the electronic medical record. Radiomic features were selected by adaptive LASSO. 

Radiomic features selected by adaptive LASSO Clinical features 

Shape-Flatness Gender 

Shape-Sphericity Grade 

Firstorder-RootMeanSquared Age at diagnosis 

GLCM-Imc2 SUVp 

GLCM-InverseVariance GTVp (ml) 

GLCM-JointEnergy Axis size (mm) 

GLSZM-ZoneEntropy BED for prescription 

NGTDM-Busyness BED for PTV max 

 BED for PTV min 
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recurrence with the other 49 features failing to predict for the 

endpoint. 

3.3   Random Forest Model Predictions 
The random forest model was not able to accurately 

predict recurrence of lung cancer in the testing group. The 

random forest model maintained a low overall error rate by 

misclassifying all the cases of local recurrence. 

3.4   Deep Learning Model Predictions 
The MLP analysis was able to correctly classify 78.6% of 

all results and correctly predicted all cases of local 

recurrence. The AUC was 0.88 with a root mean squared 

error of 0.46. For the purposes of this paper, a value of above 

0.7 for the AUC [23,24] or c-index [24] demonstrated a 

model of sufficient predictive capability. 

3.5   Outcome Predictions  
Following risk stratification into high- and low-risk 

groups, the random forest model classified all the cases of 

local recurrence in the high-risk group. Gray’s test of the 

random forest model had a p-value of 0.15 and thus was not 

able to demonstrate statistically significant separation 

between the groups. The c-index of the model was 0.41 

which demonstrates poor fit of the model. 

For time-to-event analysis of the MLP predictions the 

model was able to demonstrate statistically significant 

separation via analysis with Gray’s test (p=0.04). A p-value 

of <0.05 was considered significant for the purpose of this 

paper. The high- and low-risk groups had a difference 

between the mean time before an event (local recurrence or 

censoring) of 0.44 years (95% CI = 0.03–0.86). The model 

performed well with a c-index of 0.80. 

4.   Discussion 

This paper was able to successfully differentiate between 

patients with a high- and low-risk of lung cancer recurrence 

after SABR via an MLP with a cost-sensitive classifier. This 

method was able to demonstrate the improved prediction of 

outcomes compared to a random forest model that was 

unable to show statistical significance. To the authors’ 

knowledge, this is the first use of an artificial neural network 

in combination with radiomic data to predict lung 

malignancy recurrence, and this is the first accurate 

prediction of this risk using only radiomic data from pre-

treatment CT imaging. 

Recent trends in machine learning have led to the use of 

deep learning neural networks as the dominant methodology 

in a number of perceptual classification competitions, 

wherein deep learning consistently outperforms probabilistic 

modelling, kernel methods and tree models [41]. Similar to 

this consensus, this paper found improved modelling with 

the deep learning methods compared to random forest 

models. While the purpose of this paper is not to claim 

methodological superiority, the cautious reporting of 

positive results serves to demonstrate the proof of concept of 

the methodology for this indication. The use of MLPs has 

been established as a valid methodology in predicting 

outcomes based on genetic markers [25] and in using 

radiomics to identify disease [26] or to differentiate tumour 

subtypes [27]. These results are preliminary but contribute 

to a growing body of evidence demonstrating the potential 

for the use of deep learning to analyse radiomic data and 

suggest a benefit to this method in assessing for the local 

recurrence of lung malignancies. 

The MLP was able to accurately categorise 78.6% of all 

patients and predict 100% of local recurrence (AUC=0.88). 

The modelling had a 100% negative predictive value and a 

17% positive predictive value. The 15 participants who were 

classified as false positives by the MLP could potentially be 

at a highest risk of experiencing local recurrence in the 

future. The short follow-up time before data collection for 

the participants in the paper likely means that some of the 

other participants who would experience local recurrence 

had not yet been identified. The benefit of the cost-sensitive 

analysis within the MLP can be noted here. The random 

forest model, although unable to identify any cases of local 

recurrence, maintained an overall accuracy of >95%. Due to 

having few cases of local recurrence, the model tends to 

misclassify those results to maintain the lowest possible 

Table 4 – Confusion Matrix of MLP Predictions. MLP model was built to assess for the local recurrence of lung cancer 

after SABR. Model predicted 18 cases of local recurrence, including all actual cases of local recurrence. 
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error. This is common in machine learning modelling with 

unbalanced data. The cost-sensitive analysis in the MLP 

penalised false negatives, which improved true-positive 

prediction and increased false-positive prediction. This 

decreased the accuracy of the model to 78.6% but increased 

the sensitivity of the model to 100%. 

While these results appear very successful at predicting 

the endpoint, using the MLP solely for predicting cases of 

local recurrence is falsely optimistic. Models built on a 

limited set of data become overfit to the initial dataset, and 

thus, it is likely that this overfitting would make this model 

less successful at predicting local recurrences in new data. 

This decreases the reliability of the high sensitivity and the 

AUC. 

A different metric of outcome for the MLP predictions 

was used for a more accurate impression of the model’s 

actual capacity to assess patients. The likelihood of risk was 

assessed by differentiating patients into high- and low-risk 

groups around the median.  As this then includes 17 

participants who the model did not predict would experience 

local recurrences (but did deem at a higher risk), it greatly 

decreases the effects of model overfitting on the analysis. 

The analysis was able to demonstrate a significant separation 

between the high- and low-risk groups (p=0.04, c=0.80). 

There was an average of 5 months longer until a participant 

in the low-risk group experienced an event compared to the 

participants in the high-risk group. The MLP outperformed 

the random forest model by having more significant time-to-

event prediction capabilities. The random forest model was 

not able to differentiate accurately between high- and low-

risk participants and demonstrated a poor model fit (p=0.15, 

c=0.48). 

In the existing literature, five papers were able to identify 

markers that were significant for local recurrence, with only 

one paper being able to predict local recurrence. These 

methods included statistical analysis with the Cox 

proportional hazard model or machine learning with random 

forest modelling. These outcomes are similar to the results 

of this paper, wherein the adaptive LASSO identified 

markers significant for local recurrence and the random 

forest modelling was unable to accurately predict local 

recurrence or high-risk patients. The use of AI in predicting 

the local recurrence of cancer can also forego assessing 

radiomic features entirely with the use of the types of AI that 

directly assess images, such as convolutional neural 

networks (CNNs). These have the benefits of not being 

limited to pre-defined features and enable the model to 

develop unique features that can be more predictive of the 

endpoint. The development of unique features within the 

model are unable to be externally recreated due to the nature 

of the AI, which can limit reproducibility. Of course, the 

model itself can be externally validated on new datasets 

although this does depend upon the authors publishing their 

models. A review of the existing literature only identified 

Figure 2 – Probability of Local Recurrence of Malignancy in Combined Clinical/Radiomic Feature Models. Time-

to-event outcome prediction for the random forest and MLP models based on high- and low-risk groups. Random forest 

model was not able to show statistically significant separation between high- and low-risk groups. MLP was able to 

show separation between groups with p=0.04. 
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one CNN used for the local recurrence of lung malignancies 

after SABR, which was unable to predict the endpoint 

accurately (c=0.38) [8]. A table comparing the methods, 

scope, and outcomes of six papers predicting local 

recurrence after SABR is available in Appendix 2. None of 

these datasets were available for use or had the appropriate 

CT scanner calibrations for an accurate, direct comparison 

of radiomic features. 

In the adaptive LASSO, glcm-Inverse-variance was the 

feature with the highest correlation to local recurrence. 

Interestingly, and beyond the scope of this paper that did not 

account for histological findings, glcm-Inverse-variance has 

been reported to have a strong correlation with the Ki-67 

proliferation index (p=0.00) [28], which suggests more 

aggressive tumours that would be more likely to recur. 

Flatness was identified as a significant predictor in this 

paper’s random forest model; this feature was also identified 

as significant in the existing literature [2]. 

The interpretation of these results should be performed 

with caution due to the small sample size and short duration 

of follow-up. The other limitations of this paper include the 

manual delineation of the GTV and the use of non-

harmonised images from multiple CT scanners. These 

limitations can be addressed in future research by using only 

images with GTVs delineated to the pixel value [1], trialling 

methods for CT image harmonisation to ensure that the CT 

images are standardised across different scanners [29] and 

imaging patients at different time points to accommodate 

temporal variabilities. The results could be improved upon 

by expanding the number of sites used to include a greater 

number and diversity of patients. 

5.   Conclusion 

In conclusion, the integration of new technology into 

clinical practice is changing physicians’ capacity to tailor 

patient care. AI models can be built that predict for event 

outcomes, and these have the potential to be used to modify 

early treatment at a time when it is most impactful. This 

paper demonstrated a potential for deep learning models to 

identify high-risk patients with improved sensitivity and 

statistical significance compared to traditional machine 

learning models. While this represents only an assessment of 

a small cohort of lung cancer patients at two institutions, the 

MLP used in this paper predicted 100% of the lung cancer 

local recurrence and identified patients at a higher risk with 

statistically significant differentiation from the low-risk 

group. The random forest machine learning method was 

unable to predict any local recurrence and could not 

significantly differentiate between high- and low-risk 

patients. The improved modelling predictions with deep 

learning analysis demonstrate a potential benefit to the use 

of this type of modelling for this indication and suggest a 

need for ongoing research in this area.
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6.   Appendices 

Appendix 1 – description of radiomic features 
Quantifying intensity describes the density of the tumour by calculating the grey-level histogram and the probability 

density by calculating the grey-level occurrence matrix [14]. Fine texture features assess homogeneity at the limit of the 

image resolution by evaluating similarities in intensity between adjacent voxels; the grey-level co-occurrence matrix 

(GLCM) and neighbouring-grey-tone-difference. Coarse texture features measure the gross homogeneity of the tumour 

structure. This is done through assessing run lengths, which are the size of a group of adjacent voxels that measure similar 

greyscale intensities which are known as grey-level-size-zones and grey-level-dependence [30]. Morphological features 

quantify the shape, surface area and volume of the tumour [14]. 

Table 5 – 107 Pyradiomic Features used. All features concur with definitions from IBSI. 

Intensity Features Fine Texture Features Coarse Texture Features Morphological Features 

● First-Order Features: 

10-Percentile 

90-Percentile 

Energy 

Entropy 

Interquartile Range 

Kurtosis 

Maximum 

Mean-Absolute-

Deviation 

Mean 

Median 

Minimum 

Range 

Robust-Mean-

Absolute-Deviation 

Root-Mean-Squared 

Skewness 

Total-Energy 

Uniformity 

Variance 

 

● GLCM features: 

Autocorrelation 

Cluster-Prominence 

Cluster-Shade 

Cluster-Tendency 

Contrast 

Correlation 

Difference-Average 

Difference-Entropy 

Difference-Variance 

Id 

Idm 

Idmn 

Idn 

Imc1 

Imc2 

Inverse-Variance 

Joint-Average 

Joint-Energy 

Joint-Entropy 

MCC 

Maximum-Probability 

Sum-Average 

Sum-Entropy 

Sum-Squares 

● NGTDM features: 

Busyness 

Coarseness 

Complexity 

Contrast 

Strength 

● GLDM features: 

Dependence-Entropy 

Dependence-Nonuniformity 

Dependence-Nonuniformity-Normalized 

Dependence-Variance 

Gray-Level-Nonuniformity 

Gray-Level-Variance 

High-Gray-Level_emphasis 

Large-Dependence-Emphasis 

Large-Dependence-High-Gray-Level-Emphasis 

Large-Dependence-Low-Gray-Level-Emphasis 

Low-Gray-Level-Emphasis 

Small-Dependence-Emphasis 

Small-Dependence-High-Gray-Level-Emphasis 

Small-Dependence-Low-Gray-Level-Emphasis 

● GLRLM features: 

Gray-Level-Nonuniformity 

Gray-Level-Nonuniformity-Normalized 

Gray-Level-Variance 

High-Gray-Level-Run-Emphasis 

Long-Run-Emphasis 

Long-Run-High-Gray-Level-Emphasis 

Long-Run-Low-Gray-Level-Emphasis 

Low-Gray-Level-Run-Emphasis 

Run-Entropy 

Run-Length-Nonuniformity 

Run-Length-Nonuniformity-Normalized 

Run-Percentage 

Run-Variance 

Short-Run-Emphasis 

Short-Run-High-Gray-Level-Emphasis 

Short-Run-Low-Gray-Level-Emphasis 

● GLSZM features: 

Gray-Level-Nonuniformity 

Gray-Level-Nonuniformity-Normalized 

Gray-Level-Variance 

High-Gray-Level-Zone-Emphasis 

Large-Area-Emphasis 

Large-Area-High-Gray-Level-Emphasis 

Large-Area-Low-Gray-Level-Emphasis 

Low-Gray-Level-Zone-Emphasis 

Size-Zone-Nonuniformity 

Size-Zone-Nonuniformity-Normalized 

Small-Area-Emphasis 

Small-Area-High-Gray-Level-Emphasis 

Small-Area-Low-Gray-Level-Emphasis 

Zone-Entropy 

Zone-Percentage 

Zone-Variance 

● Shape features: 

Elongation 

Flatness 

Least-Axis-Length 

Major-Axis-Length 

Maximum-2D-Diameter-

Column 

Maximum-2D-Diameter-Row 

Maximum-2D-Diameter-Slice 

Maximum-3D-Diameter 

Mesh-VolumeMinor-Axis-

Length 

Sphericity 

Surface-Area 

Surface-Volume-Ratio 

Voxel-Volume 
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Appendix 2 – summary of research using radiomic features to predict local recurrence of lung cancer 

Table 6 – Details of studies predicting local recurrence of lung cancer following SABR treatment using CT radi-
omic features. 

Author Clinical 
features 

Radiomic 
features 

Participants Delineation 
method 

Analysis method Results 

Afshar et 
al (2020) 

4 18 hand-crafted 
PET and CT 
features based 
on Oikonomou 
et al (2018)  

132 participants with 
early stage lung 
cancer (N0M0) treated 
with SABR over 4.5 
years. Treatment not 
expanded upon in the 
paper.  

Manual by 
thoracic 
radiologist and 
in-house 
software 

Radiomic features 
analysed with Cox 
PHM and Kaplan-
Meier analysis, 
compared to 
parallel CNN 
model 

No predictors of LR in 
radiomics models, LR 
prediction in CNN model 
not significant (c-index 
0.375).  

 

Dissaux et 
al (2020) 

7 92 PET, 92 CT 
features  

87 participants with 
NSCLC stage I–II 
who underwent SABR 
at 4 institutions over 5 
years. Treatment was 
48–60 Gy in 3–8 
fractions. 

Fuzzy locally 
adaptive 
Bayesian 
method in 
PET, manually 
in CT 

Images 
harmonised with 
ComBat. 
Spearman rank 
correlation, Cox 
regression models, 
Kaplan-Meier 
curves with log-
rank test. 

Univariate prediction (AUC 
> 0.7): CT flatness, CT 
shade, elongation. PET 
Information Correlation 2 
(IC2) and PET texture 
strength. 

Multivariate prediction: IC2 
and CT flatness model had 
92% accuracy. IC2 and 
texture strength 91% 
accuracy. 

Kakino et 
al (2020) 

9 944 CT features 
via 
PyRadiomics 

573 participants with 
early- stage lung 
cancer who underwent 
SABR across 11 
institutions and 10 
years. Treatment 
exceeded 100 Gy of 
the BED. 

Manual Adaptive LASSO, 
Random Survival 
Forest, Gray’s test 
for statistical 
significance 
between high/low 
risk groups, 
bootstrapping.  

Combined clinical/radiomic 
prediction model not 
statistically significant for 
predicting LR (c-index 
0.61). 

11 radiomics features 
prognostic for LR in feature 
selection: firstorder_Range, 
gldm_SmallDependenceLo
wGreyLevelEmphasis, 
gldm_DependenceVariance, 
glcm_Idmn (log sigma 
0.5mm and 2.5mm), 
Elongation, 
gldm_DependenceEntropy, 
glcm_ClusterShade 
(wavelet LH and HL), 
gldm_LargeDependenceHig
hGreyLevelEmphasis, 
glcm_MCC 

Lafata et al 
(2019) 

0 43 CT features 
via 
PyRadiomics 

70 participants, stage 
1 who underwent 
SABR treated at Duke 
University between 
2007 and 2014. 
Treatment was a mean 
dose of 51 Gy, 
hypofractionation 
scheme. 

Manual by 
experience 
physician and 
physicist 

Welch’s t-test, 
singular value 
decomposition, 
LASSO. 

Univariate predictors: 
GLCM_Homogeneity2, 
Long-Run-High-Grey-
Level-Emphasis 

Li et al 
(2017) 

24 219 CT features  
via Definens 

92 participants with 
stage I or IIA who 
underwent SABR over 
4.5 years. Standard 
treatment was 50 Gy 
in 5 fractions.  

Automatic 
with Definiens 
Developer 

ICC, Cox PHM, 
Harrell’s c-index, 
10-fold cross 
validation 

Univariate predictors of 
loco-regional recurrence: 
long axis diameter, short 
axis*longest diameter, short 
axis, volume in cm, av-dist-
COG-to-border, min-dist-
COG-to-border, volume-
pxl, AvgGLN 

Pyka et al. 
(2015) 

1 Hand-crafted 
CT and PET 
features 

45 sequential 
participants with T1 or 
T2 (NOMO) NSCLC 
who underwent 
SABR. Treatment was 
24–45Gy in 3–5 
fractions. 

Automatic 
with InterView 
Fusion 

ROC, Kaplan-
Meier curves, log-
rank test, Cox 
regression 

Univariate CT: MTV, 
tumour size 

Univariate PET: NGTDM 
and GLCM entropy, 
correlation. 
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Appendix 3  

Table 7 – R packages used for data analysis 

R packages References 

> ggpubr  [31] 

> glmnet [42] 

> randomForest  

> tidymodels  

> tidyverse  [32] 

> workflows  [33] 

> ranger  [34] 

> survival  [35] 

> survminer  [36] 

> intsurv  [37] 

> randomForestSRC  [38] 

> pec  [39] 

> cmprsk  [40] 

 

Appendix 4 – Technical method 

First, the radiomic features need to be normalised to aggregate the scales by converting all values to a z-score. This can 

be done with the following code: 

dataframe <- scale(dataframe) 

In a Spearman’s rank correlation test, varying levels of correlation significance are reported, usually above 0.7–0.9. 

Spearman’s rank correlation test calculates the correlation between the ranks of x and y in the following equation, where 

rho is the Spearman correlation efficient, x’=rank(x) and y’=rank(y): 

 

Equation 1 – Spearman’s rho equation 

𝑟ℎ𝑜 =
= ∑(𝑥′ −𝑚𝑥′)(𝑦′𝑖 − 𝑚𝑦′)

√∑(𝑥′ −𝑚𝑥′)2∑(𝑦′ −𝑚𝑦′)2
 

Spearman’s rank correlation for ≥ 0.9 can be performed with the following code for a numeric data frame: 

 

> library(ggpubr)31  

> spearmandf <- cor(x = dataframe, method = c("spearman") 

> correlationdf <- subset(spearmandf[,]> = 0.9) 

 

The adaptive LASSO is an iteration of LASSO with oracle properties that work by weighting the following equation to 

counteract known biases in regular LASSO: 

 

Equation 2 – adaptive LASSO 

 
 
 
 
 
 
 
where β = the constant coefficient, X = the covariate matrix, w = a known weight vector. 
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An adaptive LASSO can be implemented in R by first performing a regular LASSO and then scaling the X matrix [43]. 

The model can be assessed with k-fold cross-validation to find the optimal lambda that minimises the test mean squared 

error (MSE). 

> library(glmnet)  

> x <- data.matrix(dataframe) 

> y <- dataframe$responsevariable 

> n <- nrow(x) 

 

># standardise data 

> ymean <- mean(y) 

> y <- y - mean(y) 

> xmean <- colMeans(x) 

> xnorm <- sqrt(n-1)*apply(x,2,sd) 

> x <- scale(x, center = xmean, scale = xnorm) 

 

> #fit ordinary least squares 

> lm.fit <-lm(y~x) 

> beta.init <-coef(lm,fit)[-1] #exclude 0 intercept 

 

> #calculate weights 

> w<-abs(beta.init) 

> x2 <-scale(x, center = FALSE, scale = 1/w) 

 

># fit adaptive lasso 

> adaplasso <- cv.glmnet(x2, y, family = "gaussian", alpha = 1, standardize = 

FALSE, nfolds=10) 

> best_lambda <- adaplasso$lambda.min # minimizes test MSE 

> best_model <- predict(adaplasso, x2, type="coefficients", s="best_lambda")[-1] 

 

> # calculate estimates 

> best_model <- best_model * w / xnorm # back to original scale 

> best_model <- matrix(best_model, nrow = 1) 

> xmean <- matrix(xmean, nrow = 10) 

> b0 <- apply(best_model, 1, function(a) ymean - a %*% xmean) # intercept 

> coef <- cbind(b0, best_model) 

> coef 

6.1   Random Forest Model 
A random forest machine learning model uses hundreds of decision trees to average the results and predict the most likely 

outcome. 

The random forest model consists of a number of hyperparameters that can be optimised to improve the performance of 

the model. One of the ways to do this is through a grid search method, wherein the operator defines a range of values and 

runs tests on how these improve the model, through comparing the out-of-bag (OOB) error or a different metric of model fit 

such as the AUC. 

The machine learning model used in this paper used a 70/30 training/testing data split. This can be implemented in R, as 

is shown in the following example that also includes a grid search to optimise the mtry , sample size and minimum node size 

hyperparameters: 

> #partitioning data into training/testing set for random forest 

> set.seed(9999) 

> index <- sample(1:nrow(dataframe),0.7*nrow(dataframe)) 

 

> datatrain = dataframe[index,] #create the training dataset 

> datatest = dataframe[-index,] #create the testing dataset 

 

> library(randomForest)  

> bestmtry <- tuneRF(datatrain, datatrain$predictor, stepFactor= 1.5, improve=1e-5, ntree=500) 
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The following is a grid search conducted in R to optimise random forest hyperparameters: 

> library(tidymodels)  

> library(tidyverse)  

> library(workflows) 

> library(ranger)  

 

> #2 packages are used for different steps in building this model. They use 

different shorthand for the hyperparameters. min_n = min.node.size, trees = 

num.trees, mtry = mtry. 

 

> #create cross-validation object from training data 

> train_cv <- vfold_cv(datatrain) 

 

> #define recipe and include preprocessing 

> rad_recipe <- recipe(outcome~predictors, data = dataframe)%>% 

+               step_normalize(all_numeric())%>% 

+               step_impute_knn(all_predictors() 

 

> #apply the recipe to the training data and extract pre-processed dataset 

> datatrainpreproc <- rad_recipe%>% 

+             prep(datatrain)%>%   

+             juice() 

 

> #specify the model 

>rfmodel <- rand_forest(mode = "classification", 

+               mtry = tune(), 

+               trees = tune(), 

+               min_n = tune(),%>% 

+               set_engine("ranger", importance = "impurity") #set importance to 

visualise feature importance 

 

> #build workflow 

> rf_workflow <- workflow()%>% 

+            add_recipe(rad_recipe)%>% 

+            add_model(rfmodel) 

 

#test values in grid and analyse outputs 

> rfgrid <- expand.grid(mtry = c(3,4,5,6), trees = c(500, 1000, 1500, 2000), 

min_n = c(1:10, by=1) 

> rf_tune <- rf_workflow%>% 

+            tune_grid(resamples = traincv) 

+            grid = rfgrid 

+            metrics = metric_set(accuracy,roc_auc) 

>rf_tune%>% 

              collect_metrics() 

 

> #requires analysis of standard error for error minimisation 

> best_hyperparameters_search <- select_best(rf_tune, metric = "roc_auc", 

maximize = TRUE) 

> best_hyperparameters_search 

 

> #run random forest with optimal parameters 

> rf <- ranger(formula = outcome~predictor, data = datatrain, num.trees = a, 

mtry = b, min.node.size = d,  sample.fraction = 1, splitrule = "extratrees", 

importance = "impurity") 
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#repeat model 100 times to improve estimate of error 

> OOB_RMSE <- vector(mode = "numeric", length = 100) 

> for(i in seq_along(OOB_RMSE)){ 

+      optimal_rf < -ranger( 

+          formula  = outcome~predictor, 

+          data = datatrain, 

+          num.trees = a,  

+          mtry = b, 

+          min.node.size = d, 

+          sample.fraction = 1, 

+          splitrule = "extratrees", 

+          importance = "impurity" 

+      ) 

+  } 

> # printing optimal_rf will give best OOB error 

 

#run random forest model against test group 

> testpredictions<-predict(optimal_rf, datatest) 

> # print testpredictions for binary classification outcomes 

 

#assess feature importance in model 

>rf$importance 

 

6.2   Multilayer Perceptron 

The following steps to create an MLP can be performed in Weka’s GUI. The Dl4MlpClassifier package [28] is an 

extension that can be downloaded. The trained MLP described in this paper is available on the author’s GitHub 

(github.com/allijan45), and the reader is encouraged to try it with their own radiomic data. 

 
1. Open the explorer application. 

 

 2. In the “Preprocess” tab: click “Open file.” 
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3. Ensure all of the attributes are of the correct data 
type (e.g. numeric and nominal). These can be 
changed with the filter option. 

 

4. In the “Classify” tab: choose the desired classifier. 
The Dl4jMlp Classifier is one option for building an 
MLP. 

 

5. Changes to the model can be made by clicking the 
classifier name, e.g. changing filters and adding a 
cost-sensitive classifier. 

 
 

 
6. Decide between training/testing the classifier or 
using cross-validation. 
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7. Select for the outcome variable and then click start. 

 
 

8. Assess output. Repeat steps 4–7 as needed to im-
prove the model. 

 
 

9. Save model by right-clicking on it in the results list 

 
 

 
10. Upload new data for re-evaluation; right-click 
on the desired model, re-run model, on new data 
without retraining 

 
 

 

6.3   Outcome Prediction 
Although many classifiers are able to accurately identify markers that predict within their datasets, publishing these in 

the absence of validation is often very optimistic. This is usually due to expected limitations that often include a small sample 

size with limited participant diversity and the likelihood of some methodological errors in image collection or processing. 

To ensure the quality reporting of radiomic analyses, risk groups should be split around the median or should be reported 

with continuous risk variables. This then requires improved model performance to accurately differentiate between high- 

and low-risk groups. This was performed in R as follows: 

> library(survival)  

> library(survminer)  

> library (intsurv)  

> library(randomForest SRC)  

 

> #Determine high or low risk group: requires data frame with time and event 
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variables 

> riskgroup <- rfsrc(Surv(time, event)~., dataframe, ntree = a, mtry = b, 

importance = TRUE) 

> datarisk <- cbind(dataframe, riskgroup$predicted) 

 

> #comparison of high/low risk groups as Kaplan-Meier plot 

> datarisk1 <-mutate(datarisk, predicted  =ifelse((predicted >= 

median(datarisk$predicted), "1", "0")) 

> # if above average chance of event in random survival forest then predicted 

column shows high risk (1), otherwise classified as low risk (0) 

 

> datarisk1 <- as.numeric(datarisk1) 

> fitrisk <- survfit(Surv(time, event)~predicted, data = datarisk1) 

> risk_diff <- survdiff(Surv(time, event)~predicted, data = datarisk1) 

> ggsurvplot(fitrisk, data = datarisk1, conf.int = TRUE, pval = TRUE, 

legend.labs = c("Low Risk", "High Risk"), legend.title = "Risk Group", xlab = 

"Years", ylab = "Probability of Event") 

> #output is Kaplan-Meier plot as pictured in Figure 2 

 

6.4   Model Evaluation 
The MLP was performed with 10-fold cross validation. The significance of separation between the high- and low-risk 

groups was calculated in R with bootstrapping (10,000 iterations) to determine the difference between groups and the 95% 

confidence interval. 

> library(pec)  

> library(cmprsk)  

 

> # run Gray’s test for competing risk based on cumulative index 

>dataframe$event <- as.factor(dataframe$event) 

> cuminc(ftime = dataframe$time, fstatus = dataframe$event, group = 

dataframe$risk 

 

> #calculate c-index of model 

> fit1 <- coxph(Surv(time, event)~predicted, data = datarisk1) 

> cIndex(time = fit1$time, event = fit1$event,risk_score = 

fit1$linear.predictors) 

 

> #assess confidence intervals with bootstrapping 

> #evaluate outcome separation 

> #separation of outcomes should show a difference in means between high and low 

risk groups 

> meanhighrisk <- mean(dataframe$time[dataframe$risk == "High"]) 

> meanlowrisk <- mean(dataframe$time[dataframe$risk == "Low"]) 

> meanlowrisk - meanhighrisk #to show superiority the low risk group should have 

a higher mean than the high risk group therefore result should be a positive 

number 

 

> n.highrisk = x #number of individuals classified as high risk 

> n.lowrisk = y #number of individuals classified as low risk 

> #if you split around the median n.highrisk = n.lowrisk 

> B = 10000 #number of bootstrap resamples 

 

> #create a matrix which samples many results 

> set.seed(13573) 

> boot.high <- (matrix(sample(dataframe$time[dataframe$risk == "High"], size = 
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B*n.highrisk, replace=TRUE), nrow = n.highrisk, ncol = B) 

> boot.low <- (matrix(sample(dataframe$time[dataframe$ris k== "Low"], size = 

B*n.lowrisk, replace=TRUE), nrow = n.lowrisk, ncol = B) 

 

> #calculate the difference in bootstrapped means 

> bootdiff<-colMeans(boot.high) - colMeans(boot.low) 

 

> #calculate 95% confidence intervals 

> quantile(bootdiff, prob = 0.025) 

>quantile(bootdiff, prob = 0.975) 

># if the 95% confidence intervals do not cross 0 there is statistically 

significant difference between the means 

 
 


