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Abstract Radiomics is a promising method to quantify and describe the tumor phenotype on medical images. High numbers of 

image features are extracted from medical images and can be used within a clinical decision support system by integrating this data 

with clinical and pathological variables. Herein, we give a short introduction into this image analysis method and present an overview 

on the workflow.  
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Varying outcomes of anticancer treatment for the same 
tumor histology and site have led to new insights in 
cancer biology and oncological research. Heterogene-
ity between individual patients, their biology and tu-
mors itself gave rise to the concept of precision oncol-
ogy – aiming to tailor the treatment and give “the right 
patient or the right tumor the right treatment”. How-
ever, heterogeneity is not only present between differ-
ent tumors but also within a tumor and is recognized 
as a possible factor for resistance to anticancer treat-
ment [1]. Medical images nowadays play a crucial role 
in oncology – not only for diagnostic but also for ther-
apeutic purposes and are often acquired at multiple 
consecutive timepoints during a patient`s course of 
disease. Besides the anatomy of the tumor and of nor-
mal tissue, additional information and data are cap-
tured in the images. A strong relationship between the 
macroscopic phenotype of a tumor, seen on these med-
ical images, and the underlying cancer biology has 
been shown [2, 3]. However, the human eye is not ca-
pable of capturing all the subtle differences and 
shades. This information can be extracted in form of 
features, referring to as “Radiomics”.  Taking it all to-
gether, radiomics is a promising method to display the 
spatial and temporal heterogeneity within tumors. 
Furthermore, in contrast to radiological reports, which 
nowadays are still descriptive and written in unstruc-
tured text form without many measurements, radi-
omics is able to perform a quantitative image analysis 
aiming at a comprehensive and reproducible charac-
terization of medical images. By integrating these data 

with clinical variables, radiomics models have the po-
tential to be used in a clinical decision support system 
(CDSS) to guide clinical decision-making. This mini re-
view aims to give a very brief and short introduction 
to the concept of radiomics. Notably, even though this 
review focusses on its application in oncology, radi-
omics is also used in non-malignant disorders [4]. 
More detailed information on the individual workflow 
steps and a comprehensive overview has already been 
published [5, 6]. 

Radiomics workflow 

Radiomics analysis, more precisely the working 
steps of preprocessing of images and feature extrac-
tion, is done using specific software. There are some 
open-source or commercially available software pro-
grams. However, many institutions use in-house de-
veloped software. Apparently, to develop such soft-
ware on its own, coding skills are required. It is useful 
if the software can handle all types of imaging data 
such as CT, MRI or PET and is not limited in its scope. 
The software has to fulfill some standard criteria and 
is ideally benchmarked according to the Image Bi-
omarker Standardization Initiative (IBSI) [7]. Fig. 1 
gives an overview of a radiomics workflow.   

Imaging (Fig. 1a): A great advantage of radiomics is 
that medical images, the mainstay of a radiomics anal-
ysis, are regular part of the clinical routine. Yet, the use 
of routinely acquired images poses also a challenge as 
variability in scanner, scanning methods or image 
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reconstruction methods influence the results of a radi-
omics analysis [8]. However, imaging will remain non-
standardized, asking for correction and harmonization 
procedures that use for example information acquired 
from phantom studies [9]. 

Segmentation (Fig. 1b): Segmentation, i.e. definition 
of regions of interest (ROI) is a critical step in radiomics 
as features are extracted from these segmented areas. 
Intra- and interobserver variability in contouring ROIs 
is a well-known issue and influences results of radi-
omics analysis – therefore, ideally the ROI is seg-
mented by different observers in order to extract only 
stable features irrespective of differences in segmenta-
tion [10]. Semi-automatic and automatic contouring 
methods were developed in the last years to escape this 
issue and to reduce the immense workload related to 
segmentation of structures [11]. However, (semi-)auto-
matic contouring is prone to errors, especially in re-
gions with artifacts or much noise and in case of an un-
common appearance of the ROI (e.g. anomaly). 

Preprocessing of images (Fig. 1c): The routinely ac-
quired images first have to undergo a preprocessing 
workflow. One step is the resampling of images to 
equally sized voxels using different interpolation 
methods such as linear or cubic interpolation. The im-
ages can either be up-sampled to smaller voxel sizes – 
or down-sampled to larger voxel sizes. Image discreti-
zation refers to grouping the intensity-levels of an im-
age into a predefined interval (i.e. bin), where one can 
choose to either fix the bin size or the number of bins 
and is performed in order to reduce noise while simul-
taneously preserving relevant features. To limit the 
analysis to the tissue interested in, e.g. to remove air 
and bone, a range of Hounsfield units can be applied.  

Feature extraction (Fig. 1c): A clear definition, nomen-
clature and standardization of the features is a prereq-
uisite for the reproducibility of a quantified image 
analysis by radiomics and is given by the IBSI [7, 12]. 
The extracted features are typically divided in four 
subgroups: shape, intensity, texture and wavelet fea-
tures. Shape features quantify the geometry of the seg-
mented lesion. Intensity features look at the image in-
tensities –represented by a histogram. Texture features 
describe how these intensities change from voxel to 
voxel. Finally, wavelet features are derived from fil-
tered reconstructions of the images. By applying vari-
ous filters, numerous wavelet features can be gener-
ated.  

Feature selection (Fig. 1d): As stated above, a large 
number of features can be calculated from one single 
ROI, asking for a method, which allows to identify the 
relevant features for the clinical question. Use of all cal-
culated features would lead to overfitting, which 
means that the generated radiomics model represents 
too closely the data set and fails on new, so far unseen, 
data. One predictor per ten events is considered to be 
the maximum for logistic and Cox models [13, 14]. 
Consequently, there is a need to remove redundant 
features and reduce dimensionality, aiming to capture 
the essence of the data in a lower dimensional space. 
This is done by removing features with a lot of missing 
values or low variance and remove highly correlated 
features, i.e. feature selection. Additionally, a transfor-
mation algorithm to further reduce dimensionality is 
often applied, for instance principal component analy-
sis [15].  

Outcome modelling and integration with other var-
iables (Fig. 1d): After selection of relevant features, a 
mathematical model is built with the aim to generate a 

Figure 1. Traditional clinical procedures. 
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predictive or prognostic model for a defined “clinical 
event” by combining the radiomics features with clini-
cal, pathological or other parameters – thereby being 
able to support clinical decision-making. Different sta-
tistical or machine learning algorithms can be used for 
this purpose: e.g. linear regression, Cox proportional 
hazards model, support vector machines etc. [16, 17].  

Performance evaluation (Fig. 1d): The performance of 
the generated radiomics model can be assessed using 
different methods, e.g. the area under receiver opera-
tor characteristic curve (AUC), sensitivity, specificity 
or accuracy. The distinct models can be compared by 
conventional statistical tests such as student t-test, Wil-
coxon signed-rank test or others, depending on the 
metrics used. If multiple testing was performed, one 
should correct for that by applying one of the correc-
tion methods [18]. Additionally, the agreement be-
tween observed outcome and predicted outcome 
should be assessed – referred as calibration. For more 
details please refer to comprehensive literature on that 
topic [16, 19]. 

Model validation (Fig. 1d): The generated model 
should be validated on unseen data, preferably on an 
independent data set. Whenever possible, the model 
should be validated on a data set from a different insti-
tution (external validation) as this would be the reality 
if the model was applied in clinical routine and there-
fore enhances the credibility of a prediction model [20]. 

However, more commonly, the data set stems from the 
same institution (internal validation).  

Outlook  

A prerequisite for successful implementation of ra-
diomics as a prognostic or predictive model into clini-
cal routine in the future is standardization of the meth-
odology. Studies performed should follow some im-
portant principles as provided by a checklist for the 
transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis (TRIPOD) 
and the radiomics quality score (RQS) [6, 19]. How-
ever, as not all of the radiomics steps can be standard-
ized, compensation strategies have to be implemented. 
Imaging for example will remain non-standardized, 
which means that correction and harmonization proce-
dures are needed, using information acquired from 
phantom studies [9] . Another key step before release 
of a radiomics model as a validated decision support 
tool is validation of its performance on a prospective 
patient cohort. In conclusion, radiomics has the poten-
tial to play a key role in a clinical decision support tool 
in precision oncology in future – however, the road to 
realize this vision is still a long one. 
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