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Abstract: Operations Research has a successful tradition of applying mathematical analysis to a wide range of appli-

cations, and problems in Medical Physics have been popular over the last couple of decades. The original

application was in the optimal design of the fluence map for a radiotherapy treatment, a problem that has
continued to receive attention. However, Operations Research has been applied to other clinical problems like

patient scheduling, vault design, and image alignment. The overriding theme of this article is to present how

techniques in Operations Research apply to clinical problems, which we accomplish in three parts. First, we
present the perspective from which an operations researcher addresses a clinical problem. Second, we succinctly

introduce the underlying methods that are used to optimize a system, and third, we demonstrate how modern

software facilitates problem design. Our discussion is supported by several publications to foster continued
study. With numerous clinical, medical, and managerial decisions associated with a clinic, operations research

has a promising future at improving how radiotherapy treatments are designed and delivered.
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1. Introduction

Operations Research (OR) is an area of study that focuses on the analysis of decision making. The field was born

out of the military need to improve the efficiency of “operations” during the second world war, but the associated

methods of modeling, optimizing, and analyzing real world phenomenon have found a spectrum of applications

across a range of disciplines. A recent area of interest is the application of OR to medicine, and most notably,
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to the optimal design of a radiotherapy treatment. The original suggestion to optimize the design process was

made in 1968 by Bahr et al [4]. This early publication shows that the medical physics community recognized the

use of OR long before the OR community recognized the applications in Medical Physics. However, in the 1990s

the operations research community became aware of the array of important applications in Medical Physics, and

today there is a devoted collection of OR experts whose primary interests lie in the study of applying OR to

problems in Medical Physics, e.g. see the recent works of [2, 6, 9, 35].

Through the authors’ professional interactions, we have observed that the OR and Medical Physics communities

approach problems from different perspectives, and one of the goals of this article is to address the questions

of how and why OR is beneficial to problems in Medical Physics? One of the main differences in research

methodologies is that the OR community uses a rich taxonomy of problem classes that are individually well

studied in their mathematical abstraction, and when a problem in medical physics is considered by an OR

expert, one of the initial objectives is to model the problem so that it becomes a member of one of these

classes. As such, we are not immediately concerned with solving the problem but are instead interested in

modeling and classifying it as a member of a known class. Once a problem is classified, we address how

to use (or solve) an appropriate model, but since it is a member of a specified class, we can likely use or

adapt the solution methods developed for the class. We often continue by analyzing the results to better

understand their value to the application. So from an OR perspective, the general research process is to

model, solve, and analyze against an underlying taxonomy of well known problems. Of course, not every

problem fits nicely within the taxonomy, and in this case, the OR expert has to either combine known methods

or invent new ones, and in either case, the field of OR benefits from the advancement. This type of work

similarly follows the central process of modeling, solving and analyzing, and it is this methodology that we convey.

One of the advantages of addressing a problem through the lens of OR is that we can harness the immense

professional expertise of prior research, which is often embodied in state-of-the-art software. This routinely

alleviates the OR expert from the tedious development of software to address a particular problem. Instead,

a problem can be modeled with professional software that is linked to advanced algorithms. This streamlines

problem solving and facilitates investigation since altering and solving a model are seamless. Examples of this

solution approach are presented throughout.

Consistent with the OR perspective, we have organized the remainder of the paper as follows. Section 2 considers

convex problems in Medical Physics. We continue with a discussion of discrete problems in Section 3, which

is followed by a collection of other problem formats in Section 4. Section 5 discusses the important idea of

considering multiple, and often competing, objectives. Each section points to problems in Medical Physics

that have been modeled as a member of the associated problem class. Moreover, each section explains how to
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recognize whether or not the abstraction of a real-world phenomena can be appropriately modeled as a member

of a class. Information about software and solution analysis is also included.

We mention that several reviews of Medical Physics applications already exist in the OR literature, and we point

readers to [20] and [52] as modern and sweeping reviews. Our exposition is different because it focuses more on

the OR methods for medical physicists instead of focusing on the applications for the OR community. Any reader

who would like to learn more about OR and optimization is pointed to the classic text of [27].

2. Convex Problems

The study of convex optimization is arguably at the foundation of the field of optimization. There are two reasons,

1) many real-world problems naturally fall into this category, and 2) convexity is a mathematical property that

allows us to prove the optimality of a solution. The general form is

min{f(x) : x ∈ X}, (1)

where f is a convex function and X is a convex set of n-vectors. The problem asks us to find the smallest value

of f , called the objective function, over the collection of vectors in X. The set X is convex if for all x and y in X,

we have that the line segment between them is also in X, i.e.

(1− α)x+ αy ∈ X,

provided that 0 ≤ α ≤ 1. The set X is called the feasible region and is commonly defined functionally as

X = {x : g(x) ≤ 0}. In this case the set X is convex if g is a convex function, and (1) becomes

min{f(x) : g(x) ≤ 0}. (2)

Beginning calculus students learn an intuitive concept of convexity, which promotes that a function is convex

if it’s second derivative is positive. Such intuition is overly restrictive since it only considers real-valued, twice

differentiable functions of a single variable. Instead, we let x be a vector of length n and use a definition that

weakens the differentiability condition. A real-valued function is convex if

f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y), (3)

for any x and y in the function’s domain and any α satisfying 0 ≤ α ≤ 1. This condition essentially states that

the line segment between (x, f(x)) and (y, f(y)) is above or identical to the function. The definition requires

no differentiability, although it is worth mentioning that it does imply continuity. If f is twice differentiable,
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this condition is the same as the eigenvalues of the Hessian being non-negative, which reduces to the intuitive

concept from calculus. The function is strictly convex if the inequality in (3) holds strictly for 0 < α < 1 and

x 6= y. The function g need not be single valued, and in general, we assume that g maps the n-vector x to the

t-vector (g1(x), g2(x), . . . , gt(x))T . In this case, g is convex if each component function gi(x) is convex.

Joseph-Louis Lagrange considered optimization problems like (2) in the middle of the 18th century, and his

investigation provided mathematical constructs to solve such problems. The function underlying the theoretical

development bears his name, and the Lagrangian is

(x, λ) = f(x)− λT g(x).

After years of study by great minds like von Neumann, the core theory to solve optimization problems with

digital computation was complete. Without a foray into the theoretical development, the theme is that under the

assumption that f and g have suitably nice analytic conditions, we have that if x∗ is an optimal solution to (2),

then there is a λ∗ ≤ 0 so that

g(x∗) ≤ 0, ∇f(x∗)− (λ∗)T∇g(x∗) = 0, and (λ∗)T g(x∗) = 0. (4)

These are often called the first order (necessary) Lagrange conditions for optimality. Alone, these equa-

tions do not classify optimality since they may have solutions that are not optimal. However, if f and g

are convex, then these equations are satisfied if and only if x∗ is optimal, which is the quintessential reason

why convex problems are important. This means solving a convex optimization problem is the same as solving (4).

Convex problems often arise in Medical Physics as deviation problems. A prominent example is the optimal

design of a fluence map in intensity modulated radiotherapy, and we first consider such problems. Let x represent

the fluence over a collection of angles and D(x) be the linear operator that maps fluence into dose. A näıve but

illustrative treatment design problem is

min {‖D(x)− T‖p : x ≥ 0} . (5)

A bit of book keeping is needed to make sense of this model. The vector D(x) is usually segmented into

sub-vectors that give the dose to the target, organs-at-risk, and normal tissues, and the corresponding sub-vectors

of T represent the target amounts for each of the tissues, which are normally zero except for the target. A

solution to the model is a fluence pattern x that minimizes the deviation from the desired dose T . We mention

that deviations for different tissues are often considered individually and weighted to form an objective. The

problem is then an instance of a multiple objective problem, a topic that is developed in Section 5.
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The parameter p defines the norm used to measure the deviation, and the 3 cases of p being 1, 2 and ∞ are

common. For p = 1 and p = 2, we have that ‖D(x)− T‖p = (
∑m

i=1 |Di(x)− Ti|p)1/p.

In particular, if p = 1, the problem is linear, and if p = 2, the problem is quadratic and asks us to find a least

squares solution. For p = ∞, we have ‖D(x) − T‖p = max{|Di(x) − Ti| : i = 1, 2, . . . ,m}, which means the

problem minimizes the maximum deviation. This is again a linear problem.

All three models are convex, and all three can be solved by satisfying (4). We detail the case for p =∞. If we let

A be the matrix so that D(x) = Ax, then (5) can be re-written as,

min {‖Ax− T‖∞ : x ≥ 0} ⇔ min {z : −ze ≤ Ax− T ≤ ze, x ≥ 0, z ≥ 0} ,

where e is a vector of ones of necessary length and z is an added variable that measures the maximum deviation

through the constraint −ze ≤ Ax− T ≤ ze. The model on the right is linear, and in this case, the necessary and

sufficient conditions in (4) become,

Ax+ ze ≥ T (6)

−Ax+ ze ≥ −T (7)

ATλ′ −ATλ′′ ≤ 0 (8)

eTλ′ + eTλ′′ ≤ 1 (9)

(Ax− ze− T )Tλ′ + (−Ax+ ze+ T )Tλ′′ = 0 (10)

x, z, λ′, λ′′ ≥ 0. (11)

We reiterate that any solution (x, z, λ′, λ′′) gives an optimal solution of z because the problem is convex. Similar

systems exist for the p = 1 and p = 2 cases.

If the original problem is strictly convex, then we can prove that systems like (6) through (11) have a unique

solution. This is the case for p = 2 (least-squares), which is one of the advantages of the 2-norm. However, this

is not generally a good reason to use the 2-norm. Indeed, the norm should be selected to best approach the

situation. For example, we know the maximum deviation from our prescribed dose if we solve the problem with

the infinity-norm. If the deviation is minuscule, then we have likely achieved a favorable fluence pattern. Such

a guarantee is not available with other norms. The optimal value of the problem with the 1-norm, divided by

the number of voxels, is the minimum average deviation, which may include a few large deviations balanced

against several small deviations. The 2-norm has the same behavior, although it places greater emphasis on

decreasing large deviations. In general, larger values of p reduce large deviations, with the ultimate value of
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p =∞ minimizing the largest deviation. From a modeling perspective, the value of p should be selected to fit the

desired emphasis on large deviations. For a fluence problem, it might make sense to minimize the infinity-norm

first, and if the value is small, then the treatment could be accepted. If the value is large, then we have gained

the knowledge that large deviations from the prescribed dose are necessary, and we might proceed with a

subsequent solve with the 1 or 2-norm to find an optimal fluence pattern that counters large deviations with a

preponderance of small deviations. Of course, a treatment planner would need to inspect the spatial position of

the deviations to ensure a standard of care. Restricting dose volumetrically and spatially can be achieved with

additional constraints, some of which are addressed in the next section.

The special case of linear programming is important to many areas of optimization since we often use successive

linear approximations or relaxations to solve a problem even if it is not linear. For this reason a few words

about linear programming are important. Linear programs are not strictly convex, which means that we can not

generally guarantee a unique solution to a system like (6) through (11). In particular, an important but often

overlooked fact is that different algorithms often terminate with different solutions. The source of this issue

can be succinctly described in reference to the necessary and sufficient Lagrange conditions. Almost all solution

procedures divide the system into the three categories of primal feasibility, (6) & (7) with the nonnegativity

of x and z; dual feasibility, (8) & (9) with the nonnegativity of λ′ and λ′′; and complementarity, (10). The

general attack is to satisfy two of the three categories and search for the third. A primal method, such as

the primal simplex method, satisfies primal feasibility and complementarity and searches for dual feasibility,

at which point it stops. A dual method instead satisfies dual feasibility and complementarity and searches for

primal feasibility. Interior point methods satisfy primal and dual feasibility and search for complementarity.

Since different methods solve the system differently, it is understandable that different algorithms could result in

different optimal solutions to the same problem.

Many users of optimization are interested in an algorithm’s speed, but the solution’s characteristics should

also be considered. For example, in [22] it is shown that the dual simplex method, which is commonly the

fastest option, tends to group fluence so that a few angles deliver large amounts of unacceptable dose. The

interior point methods, which are provably more efficient in the worst-case, tend to distribute fluence over many

angles. Although each algorithm is efficient on real problems, the characteristics of the optimal solutions vary

significantly. We suggest selecting a solution method and model that fits the desired outcome.

Linear programming has also appeared opaquely in medical physics [28, 51]. As an example, the biological

objective of maximizing the probability of tumor control is used in [49], but this objective is the exponential of

a linear function. Since the exponential is strictly monotonic, optimizing the biological objective gives the same

solution as optimizing the linear function. Similar biological objectives also equate to linear programs.
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We turn our discussion to how modeling and solving are separate but linked entities in OR. We demonstrate

some of what we have discussed above by adapting the simple fluence model in (5). The data needed for the

problem is the dose matrix A and the prescription T . Since the same problem is used for illustrative purposes

in the more challenging problems of later sections, we consider a much simplified version from what would

be clinically meaningful. However, the point of the example is to show how an OR expert models and solves

a problem. Our examples are based on the Modeling software AMPL c©, which links to a suite of different

numerical solvers. If not stated, we used CPLEX c© as our solver. All examples may be downloaded from

http://holderfamily.dot5hosting.com/aholder/research/papers/Supplements/pmb.tar.gz. We consider

the acoustic neuroma depicted in Figure 1. A small pencil beam model was used to calculate dose [38], and the pre-

scription, which comprised the parameter T , was to deliver 60 units of dose to the target and none to the remaining

tissues. The image was divided into a grid of 50× 50 voxels (3mm thickness). Upon relabeling, the first 9 voxels

were the target, the following 14 voxels were the left eye socket, the next 33 voxels were the brain stem, and the

last 998 voxels were the remaining normal tissue. We consider 6 equispaced angles, each with 10 pencils, of which

only those delivering significant dose to the target were used. This left 51 pencils whose fluence was to be decided.

The deviation model in (5) is too simplistic to interpret clinically since it treats all voxel deviations the same.

For example, if p = 1, the objective is to minimize the sum of deviations, and hence, large anatomical structures

dominate the design process. Since the normal tissue has the preponderance of voxels, the optimal solution to (5)

is x = 0 if p = 1, i.e. the optimal treatment is no treatment. Similar issues arise if p = 2 or p =∞. To impart a

minor clinical interpretation, we alter (5) to

min {ω‖D(x)− T‖p + ω‖D(x)− T‖p

+ω‖D(x)− T‖p + ω‖D(x)− T‖p : x ≥ 0} . (12)

The subscripts PTV , STM , EY E, and NRML indicate the dose and prescription levels for the target (PTV ),

the brain stem (STM), the left eye socket (EY E), and the remaining normal tissue (NRML). This model

remains convex but distinguishes between deviations in different tissues. The ω scalars allow us to weight the

importance of the different tissues. This model is a scalarization of a multiple objective problem, a problem class

covered in Section 5.

The code in Figure 1 illustrates the simplicity of creating a model with modeling software. These 22 lines are

all that is needed to generate a 2-norm version of (12). Importantly, this model statement is independent of

problem size, which is dictated by the size of the data and not the mathematical relationships of the model. The

data is located in another file, and although this would change for different patients, different prescriptions, and

different model parameters, this same model statement works as long as the goal is to solve the associated 2-norm
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problem. The first 10 lines of code define the index sets on which the problem’s data relies. The set ANGLES

indexes the angles, BEAMS indexes the sub-beams (sometimes called bixels) in each angle, and PENCILS is a

collection of angle, sub-beam pairs. The VOXEL sets are similar. The param commands inform AMPL to expect

a matrix A, whose rows are indexed by VOXELS and whose columns are indexed by PENCILS. A target dose

T is also expected. Each pencil has an associated variable that represents its fluence. The vector of nonnegative

variables is labeled x in the model statement. The objective is named “Deviation” and is the square of the

2-norm. The ω scalars multiply the deviations for the target and the brain stem by 10 per voxel - notice that

we divide by the number of voxels in each structure, i.e. we divide by the cardinality (card) of each voxel set.

Similarly, deviations in the eye socket are multiplied by 1 per voxel and by 1/10 per voxel in the remaining tissue.

Figures 2 and 3 show similar code for the 1- and infinity-norms, and readers should notice their similarity.

The solution to the infinity-norm problem delivered 497.81 monitor units along angle 60◦, which gave a maximum

deviation of 1.06 Gy from the desired 60 Gy to the target. The brain stem received as high as 57.54 Gy and the

normal as much as 62.86 Gy. The eye socket received no significant radiation. The 2-norm problem similarly

used only the angle at 60◦, but at the lower amount of 336.28 monitor units. This gave an under treatment of

30.60 Gy on the target but a maximum dose of 48 Gy for the brain stem. The 1-norm instead delivered 309.54

monitor units along angle 60◦ and 114.17 monitor units along angle 240◦, which were opposing angles. This

gave a maximum deviation in the target of 12.04 Gy and maximum dose to the brain stem of 59.68 Gy. Each

of these models could be altered to represent a myriad of clinical desires, such as dose-volume constraints, hard

prescription bounds that must be enforced, the restriction to non-opposing angles, etc.... The point we wish to

emphasize is that the fundamental models along with their more meaningful extensions are easily created within

a modeling environment, and we hope that readers will consider such systems as they continue their research.

The benefits are threefold: 1) models are built with a common language that facilitates dissemination, 2) natural

research questions are easily posed and answered by varying the model statement, and 3) several different solvers

can be used on the same model. This allows a user to experiment with different model and solver combinations

to see how they effect the treatment.
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2-Norm

set TISSUES;

set ANGLES;

set BEAMS;

set PENCILS within ANGLES, BEAMS;

set VOXELS;

set EYEVOXELS within VOXELS;

set BRNSTMVOXELS within VOXELS;

set TARGETVOXELS within VOXELS;

set OARVOXELS within VOXELS;

set NORMALVOXELS within VOXELS;

param A VOXELS, PENCILS;

param T VOXELS;

var x PENCILS >= 0;

minimize Deviation:

(10 / card(TARGETVOXELS)) * sum {v in TARGETVOXELS}
((sum{(a,i) in PENCILS} A[v,a,i]*x[a,i]) - T[v])ˆ2 +

(10 / card(BRNSTMVOXELS)) * sum {v in BRNSTMVOXELS}
((sum{(a,i) in PENCILS} A[v,a,i]*x[a,i]) - T[v])ˆ2 +

(1 / card(EYEVOXELS)) * sum {v in EYEVOXELS}
((sum{(a,i) in PENCILS} A[v,a,i]*x[a,i]) - T[v])ˆ2 +

(0.1 / card(NORMALVOXELS)) * sum {v in NORMALVOXELS}
((sum{(a,i) in PENCILS} A[v,a,i]*x[a,i]) - T[v])ˆ2;

Figure 1. The figure on the left depicts the acoustic neuroma used for our examples. On the right, AMPL code for the 2-norm
deviation model in (12).
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1-Norm
set TISSUES;

set ANGLES;

set BEAMS;

set PENCILS within {ANGLES, BEAMS};
set VOXELS;

set EYEVOXELS within VOXELS;

set BRNSTMVOXELS within VOXELS;

set TARGETVOXELS within VOXELS;

set OARVOXELS within VOXELS;

set NORMALVOXELS within VOXELS;

param A {VOXELS, PENCILS};
param T {VOXELS};

var z {VOXELS} >= 0;

var x {PENCILS} >= 0;

minimize Deviation:

(10 / card(TARGETVOXELS)) * sum {v in TARGETVOXELS} z[v] +

(10 / card(BRNSTMVOXELS))* sum {v in BRNSTMVOXELS} z[v] +

(1 / card(EYEVOXELS)) * sum {v in EYEVOXELS} z[v] +

(0.1 / card(NORMALVOXELS)) * sum {v in NORMALVOXELS} z[v];

subject to TrgtDeviationUpBound {v in TARGETVOXELS}:
sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] - T[v] <= z[v];

subject to EyeDeviationUpBound {v in EYEVOXELS}:
sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] - T[v] <= z[v];

subject to BrnStmDeviationUpBound {v in BRNSTMVOXELS}:
sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] - T[v] <= z[v];

subject to NrmlDeviationUpBound {v in NORMALVOXELS}:
sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] - T[v] <= z[v];

subject to TrgtDeviationLowBound {v in TARGETVOXELS}:
sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] - T[v] >= -z[v];

subject to EyeDeviationLowBound {v in EYEVOXELS}:
sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] - T[v] >= -z[v];

subject to BrnStmDeviationLowBound {v in BRNSTMVOXELS}:
sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] - T[v] >= -z[v];

subject to NrmlDeviationLowBound {v in NORMALVOXELS}:
sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] - T[v] >= -z[v];

Figure 2. AMPL code for the 1-norm deviation problem in (12).
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Infinity-Norm
set TISSUES;

set ANGLES;

set BEAMS;

set PENCILS within {ANGLES, BEAMS};
set VOXELS; set EYEVOXELS within VOXELS;

set BRNSTMVOXELS within VOXELS;

set TARGETVOXELS within VOXELS;

set OARVOXELS within VOXELS;

set NORMALVOXELS within VOXELS;

param A {VOXELS, PENCILS};
param T {VOXELS};

var z {TISSUES} >= 0;

var x {PENCILS} >= 0;

minimize Deviation:

10*z[“TARGET”] + 10*z[“BRNSTM”] + 1*z[“EYE”] + 0.1*z[“NORMAL”];

subject to TrgtDeviationUpBound {v in TARGETVOXELS}:
sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] - T[v] <= z[“TARGET”];

subject to EyeDeviationUpBound {v in EYEVOXELS}:
sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] - T[v] <= z[“EYE”];

subject to BrnStmDeviationUpBound {v in BRNSTMVOXELS}:
sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] - T[v] <= z[“BRNSTM”];

subject to NrmlDeviationUpBound {v in NORMALVOXELS}:
sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] - T[v] <= z[“NORMAL”];

subject to TrgtDeviationLowBound {v in TARGETVOXELS}:
sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] - T[v] >= -z[“TARGET”];

subject to EyeDeviationLowBound {v in EYEVOXELS}:
sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] - T[v] >= -z[“EYE”];

subject to BrnStmDeviationLowBound {v in BRNSTMVOXELS}:
sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] - T[v] >= -z[“BRNSTM”];

subject to NrmlDeviationLowBound {v in NORMALVOXELS}:
sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] - T[v] >= -z[“NORMAL”];

Figure 3. AMPL code for the infinity-norm deviation problem in (12).
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As a final example of the use of convex optimization (in this case linear programming) we consider the evaluation

of the acceptability of treatment plans. We have illustrated the use of convex optimization problems in radiation

oncology with the example of the treatment design problem. Radiotherapy treatment design as outlined above

involves a planner entering a number of plan objectives into the treatment planning system, where the chosen plan

objectives may not be the same as those used to evaluate the plan’s acceptability by an oncologist, but rather are

selected based on the personal experience of the planner [43]. In view of this discrepancy, can Operations Research

help assess the acceptability of a treatment design for clinical use, knowing what plans have been accepted in

the past? The answer is yes. Data Envelopment Analysis [14] is a linear programming technique that allows the

comparison of different “units” based on multiple factors. We consider a treatment plan to be a unit, and we

want to compare different plans based on factors related to tumor control (the so-called outputs) and sparing

of organs at risk (inputs). Let us consider nine prostate treatments for similar patients (whose anatomy has a

similar overlap of around 5%between prostate and rectum). We would like to evaluate which of the plans is most

efficient in terms of achieving high tumor control (measured as the dose received by 95% of the tumor volume

or D95) with low dose delivered to the rectum (measured as generalized equivalent uniform dose or gEUD). The

nine plans are listed in Table 1 with data points comprising their D95 and gEUD values plotted in Figure 4.

Table 1. Data for nine prostate treatment plans.

Plan Tumor D95 Rectal gEUD Efficiency score θ∗i
A 71.625 61.428 0.996

B 71.775 61.593 0.998

C 72.025 61.853 1.000

D 71.225 61.369 0.989

E 71.575 61.730 0.990

F 71.515 61.610 0.991

G 71.625 61.934 0.988

H 71.724 62.562 0.980

I 71.325 60.710 1.000

We mention that the use of DEA does not depend on the calculation method of the metrics, in this case D95 and

gEUD, as long as the calculations are consistent, which is an assumption we make. From this perspective, the

application of DEA can be used on any appropriate pre-computed information that a treatment planner might

find valuable.

We notice that point (60.710, 71.000) and point (63.000, 72.025) corresponding to plans C and I are connected

by straight line segments that form a frontier enveloping all data points (hence the name). The plot provides

evidence that, e.g. plan H is not efficient, as it should be possible to reduce gEUD without impairing D95. An

Operations Research approach to compute this efficiency is to formulate and solve the linear program (13) – (17)

for each plan i.
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Figure 4. Plot of the data for nine prostate plans.

min θi (13)

subject to θix
i −Xλ ≥ 0 (14)

−zi + Zλ ≥ 0 (15)

eTλ = 1 (16)

λ ≥ 0. (17)

(18)

Here, xi is the vector of input data for unit i, in our case just the single number gEUDi, and X is the matrix

whose columns are the vectors xi. Similarly, zi is a vector of output values of unit i, here D95i, with the matrix

of columns zi being denoted Z. The linear programming model calculates the smallest value θi such that there

is a convex combination λ (see constraint (16) with (17)) of input-output vectors from (X,Y ) such that the

combined inputs are less than or equal than the inputs of unit i (14), with the combined outputs being at least

as large as those of unit i (15). In other words, it looks for treatment plans that indicates the possibility of a

reduction of rectal gEUD without a reduction of tumor D95.

If the optimal value θ∗i is equal to 1, no simultaneous improvement is possible and the unit is deemed efficient,

indicating that there is no evidence within the nine plans that it could be further improved, whereas otherwise,

i.e. if the optimal value θ∗i < 1, it is not efficient, indicating that it should be possible to find a plan that delivers
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less dose to the rectum without reducing D95. This suggestion is derived from the existence of plans C and I: A

convex combination of plans C and I on the frontier at level D95 = 71.725 would have a lower 2% lower rectal

gEUD than plan H. Thus the method also suggests which plans to consult when trying to improve plan H. A

more detailed description of using DEA to evaluate treatment plans is found in [35].

We close this section with a brief discussion of recent uses of convex optimization in the literature. Both linear

and quadratic models have been suggested to optimize fluence, see [20] as a review. Most of these models are

extended versions of (5). Additional techniques are foundin [12, 39, 50, 61], which adapt probabilistic measures

to control dose. These models are discussed in Section 4. Deviation problems are also used for image alignment

and comparison [48], and have also been used for vault design [37].

3. Discrete Problems

Discrete optimization problems arise if the feasible region X in (2) is discrete, i.e. finite or countable. Typically,

this means the decision variables are restricted to take only integer values. More precisely, optimization

problems with only 0-1 variables and only integer variables are called binary and integer optimization problems,

respectively. Some optimization problems contain both continuous and integer variables and are called mixed

integer optimization problems. Integer variables are used if modeling entities can only occur in discrete amounts,

and binary variables model yes/no decisions and are particularly versatile for modeling logical statements. For

example, the statement “if option A is selected then option B must be selected” translates to xA − xB ≤ 0 for

binary decision variables xA and xB that take a value of one if option A, respectively B, is selected and zero oth-

erwise. Binary variables also allow counting by summation and can be used as “master” variables to control others.

Discrete optimization problems are harder to solve than convex optimization problems because the tools of convex

optimization are no longer available due to the fact that the feasible region is no longer convex. This drawback

is severe if the objective function f or the constraints g are nonlinear, however, many problems that appear

in applications have linear objectives and constraints. Hence, we introduce this important problem class by

considering problems with linear constraints and objective functions. We let f(x) = cTx, where c is a n-vector

called the cost vector, and g(x) = Ax − b, where A is a m × n-matrix and b is a m-vector. The optimization

problem

min{cTx : Ax ≤ b, x integer}

is called an integer program (IP).

There are two main strategies to solve integer programming problems, namely branch and bound algorithms

and cutting plane algorithms. Branch and bound algorithms follow a “divide-and-conquer” strategy. A division
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of the feasible set X is a set {X1, . . . Xs} of subsets of X such that X = X1 ∪ X2 ∪ . . . ,∪Xs. The optimal

solution of the original problem must be the best of the optimal solutions of the subproblems min{cTx : x ∈ Xi}.

This subdivision scheme is applied recursively and constitutes the branching part of the algorithm. It can be

visualized in a branch and bound tree, with nodes representing subproblems and branches representing the

division of a problem into subproblems. The recursion stops whenever a) a subproblem is infeasible, i.e. Xi = ∅,

b) an optimal (integer) solution for the subproblem is known, or c) the optimal (integer) solution of the subprob-

lem is guaranteed to be worse than the optimal solution of the original problem. The branching part and the

bounding in c) can be implemented in many ways and are very often designed specifically for a particular problem.

The most common type of branch and bound is linear programming based branch and bound. In this strategy,

to solve an integer program min{cTx : Ax ≤ b, x ∈ Zn}, the integrality constraints are initially omitted

(relaxed). The resulting linear program is solved, which gives a lower bound on the value of the IP. Next, a

variable that has a fractional value in the optimal solution is chosen and two subproblems are created, one

with the added constraint that the variable has to be less than or equal to its current value rounded down to

the next lower integer, one with the added constraint that the variable has to be greater than or equal to its

current value rounded up to the next higher integer. This branching partitions the feasible region of the IP into

two disjoint subsets. Imposing such bounds recursively eventually results in the discovery of integer feasible

solutions. Once a feasible solution to the original IP is known, it is possible to check condition c) by comparing

its value with that of any optimal solution of a subproblem. If the latter is bigger, then no further subdivision

of that subproblem needs consideration because an optimal solution cannot be found in the subproblem. Since

the LP relaxation of any subproblem is a lower bound on its optimal value, it is sufficient to check whether

the optimal value of the LP relaxation is larger than the value of the best known feasible solution (the incumbent).

Cutting plane algorithms also start by solving the LP relaxation of the IP. If this leads to a fractional optimal

solution, new constraints are added to the problem, which is re-solved. At least one of the added constraints

must be violated by the current optimal solution (which is therefore “cut off” from the feasible set, hence the

name cutting plane), yet all integer solutions remain feasible. This process continues until an integer optimal

solution is found. In order to be effective, the selection of constraints to be added is crucial. Modern solvers for

IPs can automatically generate many types of constraints, but for many integer programming problems, specific

classes of constraints are derived to successfully solve problems of relevant size.

It is possible, and often necessary, to combine branch and bound algorithms with cutting plane algorithms, which

yields branch and cut algorithms. Here cutting planes are introduced at every node of the branch and bound

tree, i.e. in every subproblem.
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For very large integer programs it may be impossible to include all variables in the model from the start. Linear

programming relaxations can then be solved with subsets of variables, and new variables can be generated when

necessary. Whether an additional variable contributes to the improvement of the objective function can be

determined by calculating its reduced cost, which measures the rate at which it will contribute to the objective

function. This step is called “pricing” variables. The inclusion of procedures to generate columns in branch and

bound or branch and cut algorithms is called branch and price, and respectively, branch and cut and price. We

refer readers to [36, 60] for a thorough introduction to integer programming.

In Radiation Oncology (mixed) integer optimization models appear mainly in three areas: 1) the beam selection

problem, 2) the fluence map optimization problem in order to model dose volume constraints, and 3) the

segmentation problem. We explain each of these in some detail below. A fourth problem related to Radiation

Oncology where integer programming can be used is the scheduling of treatments and the handling of patient

wait lists. This is a more traditional management type of application of Operations Research that has received

relatively little attention [13, 30, 42]. The work in [13] presents a model to schedule treatments over a period

of six days with the objective to maximize the number of new patients starting treatment (and thus reduce the

waiting list) and the sum of booked appointments.

A thorough discussion and survey of existing literature on the beam optimization problem can be found in [22].

Here, we show how to incorporate beam angle optimization in fluence map optimization. In the beam selection

problem we assume that the gantry’s possible locations are listed in a set A of positions/angles (e.g. in 360 stops

on a full circle around the isocenter of the PTV in a coplanar treatment), where at most R positions are to be

selected for treatment. We index the possible angles by a and define binary variables wa as follows:

wa =

 1 if angle a is used

0 otherwise.

The number of beams to be selected can be controlled by the constraint
∑

a∈A wa ≤ R. It is important to

note that if the quality of a set of beam angles is measured by the optimal value of a fluence map optimization

problem it can be shown mathematically that, under very general and reasonable conditions, using more angles

can never degrade a treatment [22].

Other constraints that can easily be modeled are the avoidance of opposing beams a1 and a2 by wa1 + wa2 ≤ 1,

minimal spacing of beams by
∑

a′∈U(a) wa ≤ 1, where U(a) is the set of beams in a neighborhood of a from

which only one should be selected. Moreover, if we consider continuous fluence variables, say x, constraints

of the form xai ≤ Mwa ensure that the fluence of any bixel (a, i) of beam a is 0 whenever that beam is not

selected to be used for treatment, i.e. wa = 0. The optimization of beam angles can be easily included in any
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such fluence problem, and as an example, the AMPL models of Figures 1, 2 and 3 only need the few additional

lines shown in Figure 5. We remark that the solutions of our fluence map optimization example in Section 2

only used one or two angles anyway, so that the addition of the beam selection constraints would have had no effect.

Beam Angle Optimization

var w {ANGLES} binary;

param R;

param M;

subject to Numangles: sum {a in ANGLES} w[a] <= R;

subject to Switch-off {(a,i) in PENCILS}: x[a, i] <= M * w[a];

Figure 5. AMPL code for including beam angle optimization in fluence map optimization models.

Dose volume constraints typically impose that at most q% of the volume of an organ at risk may receive a dose

greater than p Gy. From an OR perspective such a constraint is naturally modeled using integer variables. The

discretization of the patient volume into voxels (assumed to be of equal size) and the fact that dose is only

calculated in a finite number of points, one per voxel, makes it possible to determine a volume by counting the

dose points within that volume. Hence if we define

yv =

 1 if voxel v receives more than p Gy

0 otherwise,

then we can model the dose volume constraint by enforcing the constraints

∑
v∈OAR

yv ≤
q

100
|OAR| and

(Ax)v ≤ p+ Uvyv for all v ∈ OAR.

Here OAR is the set of voxels in the organ at risk and |OAR| is the number of voxels in the OAR. The first

constraint counts the voxels in the organ at risk having yv = 1 and ensures that these are at most q% of the

voxels in the organ at risk. The second set of constraints ensures that indeed only voxels receiving more than p

Gy are counted in the first constraint. Here Uv is the largest dose any voxel in the OAR can receive. Once again,

these constraints are easily incorporated in a fluence map optimization model. The AMPL code for including a

dose volume constraint on the brain stem in the example of Section 2 is given in Figure 6. The literature on dose

volume constraint models is discussed in more detail in Section 2.4 of [20].

Observing that the optimal solution found by the infinity norm model of Figure 3 in our example treats 13 of the

33 brain stem voxels with more than 50 Gy, we have added a constraint that at most 20% of the brain stem is

17



Operations Research Methods for Optimization in Radiation Oncology

Dose Volume Constraint

var y {BRNSTMVOXELS} binary;

param U {VOXELS};

param P;

param Q;

subject to VolumePercent:

sum {v in BRNSTMVOXELS} y[v] <= (Q/100) * card{BRNSTMVOXELS};
subject to DVC {v in BRNSTMVOXELS}:

sum {(a,i) in PENCILS} A[v,a,i] * x[a,i] <= P+U*y[v];

Figure 6. AMPL code for including a single dose volume constraint in fluence map optimization models.

to receive 50 Gy or more. This is achieved by reducing the total monitor units to 448.39, leaving 6 brain stem

voxels to receive 50 Gy or more, with a maximal does of 51.82 Gy, but under dosing the target by up to 6.92 Gy.

The third area where integer programming models arise is the problem of segmentation of fluence maps for

delivery of a treatment using a multileaf collimator (MLC) in step and shoot mode. The (real) values of a

fluence map are usually discretized to a small number of fluence values. These discretized values define an integer

intensity matrix I. It is then necessary to decompose I into a number of apertures for the MLC (configurations

of the MLC leaves) in such a way that some objective is minimized. Mathematically, the integer matrix I is

written as a weighted sum of 0-1 matrices, where the 0-1 matrices represent feasible apertures and the weights

represent monitor units or beam-on time for the aperture. The objective is to minimize the sum of the weights

(beam-on time), the number of apertures used (as a measure of set-up time), or the sum of the weights plus a

scaled number of apertures (measuring total treatment time). We illustrate the problem with an example from [21].

Example 3.1.

(
3 6 4

2 1 5

)
= 1

(
1 0 0

0 1 1

)
+ 2

(
1 1 0

1 0 0

)
+ 4

(
0 1 1

0 0 1

)

= 3

(
1 1 1

0 0 1

)
+ 1

(
0 1 1

1 1 1

)
+ 1

(
0 1 0

1 0 0

)
+ 1

(
0 1 0

0 0 1

)

The first decomposition uses 3 apertures with a beam-on time of 7, whereas the second uses 4 apertures with a
beam on time of 6.

This problem permits a variety of integer programming formulations, depending on the variables used. One may

use binary variables to model exposed bixels, i.e. ones in the matrices defining apertures together with (real

or) integer variables to model monitor units [59]; binary variables to model leaf positions together with binary

18



M. Ehrgott, A. Holder

variables to model individual monitor units [33]; binary variables indexed by beam-on time to model the beam-on

time of individual bixels of each aperture [59], or variables counting the number of apertures and bixels receiving

a certain number of monitor units [3].

We discuss here the counter model, which follows the latter approach. Let nb be a nonnegative integer variable

indexed by monitor units b that counts the number of apertures receiving bmonitor units. Let qijb be a nonnegative

integer variable that counts the number of apertures with cell (i, j) exposed for b monitor units, and let sijb be

a nonnegative integer variable that counts the number of apertures with cell (i, j) exposed for b monitor units in

excess of those apertures having cell (i, j − 1) exposed for b monitor units. Then the decomposition problem is

defined by the following constraints:

bmax∑
b=1

bqijb = Iij for all i, j

n∑
j=1

sijb ≤ nb for all i, b (19)

si1b = qi1b for all i, b

sijb ≥ qijb − qi(j−1)b for all i, b, and j ≥ 2.

The parameter bmax is an upper bound on the beam-on time any aperture is allowed, which can be set to

the maximum element of I. The first constraint ensures a decomposition of I into apertures. The second

ensures that valid apertures are defined, i.e. all ones in the matrices appear in a single block in each row,

and the last two guarantee the correct relationship between the q and s variables. In fact, it can be seen that

the last three constraints together are the same as
∑n

j=1 max{qijb − qi(j−1)b, 0} ≤ nb for all i, b (assuming that

qi0b = 0). However, this form of the constraints is nonlinear, whereas (19) disaggregates this into linear constraints.

Alternative objective functions are

min
bmax∑
b=1

bnb (minimize beam-on time),

min
bmax∑
b=1

nb (minimize the number of apertures),

or a combination of both.

We have seen above that integer programming models for a variety of problems in Radiation Oncology can be

easily formulated. This discussion may have generated a few questions: If incorporating beam angle optimization

is so “simple”, why is it not widely used? Why are there many different models for the segmentation problem?

Shouldn’t any one of them suffice? We try to address some of these questions below.
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In the Operations Research community integer programming is a huge subfield. Its importance lies in the versatil-

ity of the modeling power of integer and binary variables. This versatility comes at a price since integer variables

destroy convexity. So, while solution methods apply linear programming techniques to solve subproblems, which

have to be solved repeatedly, solving integer programs is considerably more demanding computationally than

solving convex optimization problems. We highlight a few of the computational problems.

1. Although the number of possible solutions of an IP is finite, it can be astronomically large. We use the

beam selection problem as an example. If 5 beam angles are to be selected out of a candidate set of 360,

then there are 4.9×1010 possible combinations. Any algorithm to solve a combined fluence map/beam angle

optimization problem needs to implicitly enumerate all these combinations. Recalling that a fluence map

optimization problem is solved for each selection of beam angles, the enormity of the problem size becomes

evident, even acknowledging the fact that many or most combinations will never be explicitly considered

due to bounding techniques. Thus, while IP models are easily formulated they just as easily become too

large to be solved with current off-the-shelf hardware and software.

2. Integer programs are difficult to solve if there are few feasible solutions or many optimal solutions. In the

first case, the solver spends a lot of computation time to find a feasible solution. Often, once a feasible

solution is discovered, an optimal solution can be reached quickly. If there are many optimal solutions it

may take a long time to prove optimality because many solutions need to be checked against the incumbent,

optimal solution.

3. Not all IP formulations of a problem are equally good. One important issue is the tightness of the LP

relaxation, i.e. how close the value of an optimal solution of the LP relaxation is to the optimal value of

the IP. The tighter, the better, because better lower bounds allow more sub-problems to be discarded due

to bounding. Such strong and weak formulations sometimes differ in only a minor aspect of the model.

An indication of a “bad” formulation is the use of “big M constraints” such as xai ≤ Mwa in the beam

angle optimization models. From a modeling perspective, any large M will do. However, large numbers

distort the numerics of LP solutions and should be avoided. Dose volume constraint models and many

MLC segmentation models also contain big M constraints [34].

Another issue is symmetry. This relates to the fact that some models allow the same solution to be feasible

in different parts of the branch and bound tree. This is an undesirable property because it severely limits

the power of the bounding step. A case in point is the variety of IP models for the MLC segmentation

problem. The early model of [33] cannot be solved for instances of clinically relevant size even with modern

computers and optimization software. It took several groups of researchers years to discover tractable

models, and those of [3, 24, 57] appear to be reaching clinically relevant problem sizes.

4. Lastly, not all problems have the same difficulty. There is a subclass of problems that is easy to solve,

meaning that efficient algorithms to solve them are known and even large instances can be solved. On the
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other hand, there is a big class of problems, known as NP-hard problems, for which no such algorithm is

known and is unlikely to exist. All known algorithms for these problems require computation time that

increases exponentially with the size of the problem. Hence problems of clinically relevant size are difficult

to solve in reasonable time. It is not trivial to distinguish the two classes. For example, it is known in the

OR literature that the problem of minimizing beam-on time in MLC segmentation is “easy”, i.e. solvable

in polynomial time. In fact, the sweep algorithm [7] proposed in the medical physics literature was later

proved by OR researchers to solve this problem optimally and in linear time [1]. If, however, the objective

is to minimize the number of apertures, the problem becomes NP-hard (it even belongs to a particularly

difficult subclass of these problems). That is precisely the reason why this problem has become popular in

the OR community.

To summarize, the application of discrete optimization methods in Radiation Oncology requires careful modeling

of the problems as well as care in the design of algorithms to solve those problems. Unlike in the case of convex

optimization problems it is not possible to separate the two. This shows that close collaboration between clinical

practice and Operations Research is a way to succeed.

4. Other Problem Types

The previous sections introduced two of the main problem types in deterministic OR, but the taxonomy of

problems mentioned in Section 1 is substantially larger, and many problems in Medical Physics appropriately

fit in problem classes outside those that have been discussed. Here we introduce conic programming, dynamic

programming, constraint programming, and global optimization. Each subsection points to applications in Medical

Physics, resources to learn more about each problem class, and software to model and/or solve problems.

4.1. Conic Programming

The idea behind conic programming is to extend the nonnegativity constraints of a standard linear program. A

cone is a set of elements, say K, so that if x is in K, then λx is in K for any positive scalar λ, and a conic program

looks like

min{cTx : Ax = b, x ∈ K}.

If K is the collection of nonnegative vectors, then this becomes a standard-form linear program. However, this

problem class is significantly larger since we can embed any feasibility condition. This is due to the realization

that if we have a general feasible set, say X, then K = {(λ, λx) : x ∈ X, λ ≥ 0} is a cone that equates to X if

λ = 1. With this cone, we see that

min{cTx : x ∈ X} = min{cTx : λ = 1, (λ, λx) ∈ K},
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which demonstrates the modeling flexibility permitted by this problem class.

Some cones tend to be more important than others in applications, and we present a model that has had wide

practical appeal due to its modeling flexibility and due to its ability to be solved efficiently. Specifically, we

consider the second order cone, which is the collection of n-vectors that for some j satisfy√∑
i6=j

x2i ≤ xj .

Second order cone programs (SOCPs) are particularly useful in radiotherapy because they allow us to consider

the inherent clinical variations that arise during treatment design and delivery. This fact was first observed

in [12], which was motivated by the delivery errors introduced from fractionating the treatment, and it was

subsequently used in [39], which was motivated by variations between dose models (see [61] for related work on

using SOCPs to model dose volume constraints). From a modeling perspective the idea is to consider the dose as

one of several possibilities, and the goal is to minimize the objective subject to all the constraints that explain

the range of possible outcomes.

We consider a small example to illustrate the technique. Suppose the unit dose delivered by two beams varies

due to patient movement, realignment, and other delivery factors. Let the fluence variables be x1 and x2, and

for the sake of simplicity, assume there are only two possible dose considerations and two voxels. We model the

problem with the following data,


A1

A2

 =



0.5 0.3

0.45 0.28

0.3 0.4

0.31 0.42


, p =

 1/4

3/4

 , and P =

 1/4 0

0 3/4

 . (20)

The rows of the unit dose matrix on the far left are separated into two submatrices, A1 and A2. The first row

of A1 explains one of the two dose scenarios for the first voxel and shows that in this scenario the first voxel

receives 0.5 Gy from beam 1 and 0.3 Gy from beam 2. The second row describes the second scenario, in which

voxel 1 receives 0.45 Gy from beam 1 and 0.28 Gy from beam 2, assuming one monitor unit. The probability of

the two scenarios is respectively 1/4 and 3/4 as listed in p, and the matrix P is conveniently the diagonal matrix

corresponding to p. Suppose the upper bounds on the dose to voxels 1 and 2 are respectively b1 = 20 and b2 = 5.

The task is to model a constraint for each voxel that restricts the probability of a dose violation, i.e. we ask that

Prob(Dv(x) > bv) < δ, where δ is a measure of an acceptable risk of a dose violation. The development of such a

constraint is found in [12], with the resulting form being

‖P 1/2(I − epT )Aix‖2 ≤
1

z
√
N

(
bi −NpTAix

)
,
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where e is a vector of ones, N is the number of treatment fractions (N = 1 here), bi is voxel i’s upper bound,

and z is the 1− δ percentile of the normal distribution with mean 0 and variance 1 (large values of z reduce the

probability of violation). For the first voxel in our example with a single fraction and z = 3, this results in

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 1/2 0

0
√

3/2



 1 0

0 1

−
 1/4 3/4

1/4 3/4



 0.5 0.3

0.45 0.28


 x1

x2


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≤
(

1

3

)20−
(

1/4, 3/4

) 0.5 0.3

0.45 0.28


 x1

x2


 ,

which after multiplication is

√
(0.019x1 + 0.008x2)2 + (0.011x1 + 0.004x2)2 ≤ (1/3)(20− 0.463x1 − 0.285x2).

The corresponding constraint for the second voxel is

√
(0.002x1 + 0.004x2)2 + (0.004x1 + 0.008x2)2 ≤ (1/3)(5− 0.308x1 − 0.415x2).

We mention that although the SOCP constraint for the first voxel is not linear, it is nearly the linear constraint

(0.5(1/4) + 0.45(3/4))x1 + (0.3(1/4) + 0.28(3/4))x2 ≤ 20, which ensures that the expected dose to the first

voxel is less than 20 Gy. Likewise, the SOCP constraint for the second voxel is nearly the linear constraint

(0.3(1/4) + 0.31(3/4))x1 + (0.4(1/4) + 0.42(3/4))x2 ≤ 5. As a minor point of note, this realization highlights that

the first SOCP constraint is redundant because any fluence vector x satisfying the second SOCP constraint also

satisfies the first.

We incorporated SOCP constraints into the acoustic neuroma case introduced in Section 2. Three scenarios were

considered. The first assumes that each dose calculation over estimates the actual dose by 10−4, the second

assumes that each dose calculation is correct, and the third assumes that the dose calculation under estimates

the actual dose by 10−4. Allowing A to be the dose matrix so that D(x) = Ax, where as before a subscript can

be used to indicate dose to the indicated structure, we find that dose is D(x) = (A − 10−4eeT )x for the first

scenario, D(x) = Ax for the second scenario, and D(x) = (A + 10−4eeT )x for the third scenario (e is again the

vector of ones so that eeT is the matrix with each component being 1). In relation to the notation in (20), we

have a matrix with three rows for each voxel v so that

Avoxv =


A− 10−4eeT

A

A+ 10−4eeT

 .
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The probabilities vector was p = (1/4, 1/2, 1/4)T , and we placed an upper bound on the eye socket of 5 Gy and

an upper bound on the brain stem of 45 Gy. We assumed 30 fractions and set the 1− δ percentile to z = 3, which

guaranteed the probability of a dose violation was at most 0.3%. Specifically, we solved

min{‖pTAx− T‖1 :

‖P 1/2(I − epT )Avx‖2 ≤ (5− 30pTAvx)/3
√

30, v ∈ EYEVOXELS,

‖P 1/2(I − epT )Avx‖2 ≤ (45− 30pTAvx)/3
√

30, v ∈ BRNSTMVOXELS,

Ax ≥ 60, x ≥ 0}.

The AMPL code describing the variables, objective and constraints is located in Figure 7. We used SNOPT to

find a solution through the Kestrel interface1. The optimal solution satisfies all the constraints and returns a

treatment with the PTV receiving between 60 and 65.03 Gy. Opposing angles at 60◦ and 240◦ were used with

respectively 220.185 and 161.561 monitor units.

SOCP

var x {PENCILS} >= 0;

var ScenarioDose {SCENARIOS, VOXELS} >= 0;

var z;

minimize WeightedDeviation: z;

subject to SOCPUpBounds {v in OARVOXELS}:
sum {sr in SCENARIOS} (sum {sc in SCENARIOS} R[sr,sc]*

(sum {(a,i) in PENCILS} Avox[sc,v,a,i]*x[a,i]))ˆ2

<= ((T[v] - NumFractions*(sum {s in SCENARIOS} p[s] *

sum {(a,i) in PENCILS} Avox[s,v,a,i]*x[a,i]))) /

(TreatmentPercentile * sqrt(NumFractions)))ˆ2;

subject to TargetLowerBound {v in TARGETVOXELS}:
sum {s in SCENARIOS} p[s] * (sum (a,i) in PENCILS Avox[s,v,a,i] * x[a,i]) >= T[v];

subject to TargetUpperBound {v in TARGETVOXELS}:
sum {s in SCENARIOS} p[s] * (sum {(a,i) in PENCILS} Avox[s,v,a,i] * x[a,i]) <= T[v] + z;

Figure 7. AMPL code for an SOCP model that calculates an optimal fluence. The R matrix in SOCPUpBounds is P 1/2(I−epT ),
which is calculated earlier in the code.

4.2. Dynamic Programming

Dynamic programming (DP) is concerned with time-dependent decisions that are based on an optimal process.

In some way DP bridges two of the main sub-disciplines in optimization, those being mathematical programming

1 Kestrel allows AMPL to use a host of the solvers supported by NEOS, of which SNOPT is one. See http:

// www-neos. mcs. anl. gov/ for further information.
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and control theory. The essential difference is the type of vector space that is used to define the optimization

problem. In mathematical programming, which is the topic of the previous sections, the decision variables are

restricted to subsets of the real line. In control theory the unknowns are instead functions with appropriate

analytic properties. If time is continuous, then the study of DP lives within variational calculus and is more like

control theory since it is defined over a collection of functions. If time is discrete, then DP is more like staged

mathematical programming, which is the case that we address here. Interested readers are directed to [41] for

more information.

Since radiotherapy treatments are delivered over several fractions, the issue of time dependent decisions arises

naturally, and Deng and Ferris [17] investigate the question of adapting the fractional doses by solving a stochastic

DP. To keep with the introductory nature of this article, we present a deterministic version to introduce DP.

Adapting our earlier notation, we let Dk(x) be the vector of doses after the kth fraction has been delivered,

where x is again a vector of fluences. If each fraction is uniform, then Dk(x) = D(x)/K, where K is the total

number of fractions. For simplicity we only consider dose and not, at least directly, its dependence on fluence. As

such, we remove the notational dependency on x and let Dk be the vector of doses indexed by voxels at the kth

fraction. Alignment errors are modeled by linearly adjusting the dose at each fraction, and this linear adjustment

is explained by a stochastic matrix W k at each fraction. As an example, suppose there are only 4 voxels and that

W k =



3/4 1/5 0 0

1/4 3/5 1/7 0

0 1/5 6/7 1/3

0 0 0 2/3


.

This matrix indicates that each Gray targeted at the first voxel is actually distributed to the first two voxels, with

the first voxel receiving 3/4 of the Gray and the second receiving 1/4. Each column has a similar interpretation.

If the patient had been aligned perfectly, then the matrix would have been the identity. Assume the uniform

fractional dose is supposed to be d = (1, 2, 4, 0)T . Then the adjusted dose is

W kd =



3/4 1/5 0 0

1/4 3/5 1/7 0

0 1/5 6/7 1/3

0 0 0 2/3





1

2

4

0


=



1.15

2.02

3.83

0.00


.

In this situation the first and second voxels are over treated and the third is under treated. Instead of delivering

the uniform fractional dose, we would rather find a dose vector uk, called a control in the study of DP and

control theory, so that W kuk = d. A solution is uk = (0.8, 2.0, 4.2, 0), and if these doses are delivered during

the kth fraction, then under the patient shift indicated by W k the desired uniform fractional dose d is correctly

25



Operations Research Methods for Optimization in Radiation Oncology

delivered. An important observation is that we are not necessarily able to find a control that always delivers the

intended dose. To see this, note that if d had been (2.8, 0.69, 1.85, 0.67)T , then the only solution to W kuk = d

would have been uk = (4,−1, 2, 1)T , which is impossible since dose can’t be removed from the second voxel.

Hence it is impossible to achieve the intended dose and some error is realized.

The central theme of control theory is to find a collection of controls that optimizes a measure of their effectiveness.

The kth control is selected from a set of possible controls appropriate for the kth state, denoted by Uk. For this

problem the kth state is the cumulative dose after the kth fraction, i.e. the kth state is Dk. Consecutive states

are linked by the associated control uk, and the dynamic iteration is

Dk+1 = Dk +W kuk. (21)

In the language of DP the problem is to select controls, u1, u2, . . . , uk, that optimize treatment delivery. There

are many measures that could be used to assess delivery, and our presentation is based on

K∑
k=1

∥∥∥∥W k−1uk−1 − 1

K − (k − 1)

(
T −Dk

)∥∥∥∥
1

,

This objective aggregates the errors between each fraction’s delivered dose and an updated uniform dose, which

is the difference between the optimal dose and the cumulative dose through fraction k. Allowing

f(Dk, uk−1) =

∥∥∥∥W k−1uk−1 − 1

K − (k − 1)

(
T −Dk

)∥∥∥∥
1

,

we aim to solve the following DP

Y (D0) = min

{
K∑

k=1

f(Dk, uk−1) : Dk+1 = Dk +W kuk, uk ∈ Uk, k = 0, 1, 2, . . . ,K

}
. (22)

The value of this minimum, denoted by Y (D0), is dependent on the initial state D0, which is used to decide

the initial control u0. The set Uk is used to guarantee that each stage’s control is realistic, with one obvious

restriction being that uk ≥ 0. Other restrictions, such as ensuring there is a fluence that can achieve the dose,

can be included. For example, Uk could be {u : Ax = u, u ≥ 0}, where A is the dose matrix so that D(x) = Ax.

Solving (22) is not trivial, but there is a marvelous technique that allows us to consider the problem in stages.

The method, which was developed by Bellman [5], shows how to establish a recurrence relation between the

optimization problems associated with consecutive states. First, notice that u1 is a function of the first control u0

and the initial state D0 = 0, which is zero since no dose has been delivered prior to the first fraction. Assuming (21)

holds, we can streamline the presentation and re-write (22) as

min
u0∈U0

{
f(D0 +W 0u0, u0) + min

{
K∑

k=2

f(Dk, uk−1) : uk ∈ Uk, k = 1, 2, . . . ,K

}}
= min

u0∈U0

{
f(W 0u0, u0) + Y (D1)

}
= min

u0∈U0

{
f(W 0u0, u0) + Y (D0 +W 0u0)

}
. (23)
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The importance of this observation is that deciding an initial optimal control can, in some way, be separated

from deciding the following controls. The inner minimization problem in the first expression is a function of D1

since this is the state from which control u1 is decided. This fact is denoted in the next equality, and since D1 is

dependent on the prior state and control, we conclude in the final equality by expressing the problem of deciding

the initial control as the minimization of the sum of two functions.

The relationship between the first two states in (23) can be continued. As an example, the case with three

fractions is

Y (D0) = min
u0∈U0

{
f(D1, u0) + min

u1∈U1

{
f(D2, u1) + min

u2∈U2

{
f(D3, u2)

}}}
. (24)

This expression is used to solve DPs, with the two standard methods being forward and backward techniques,

although there are several variations, see [41, 44] for further details. For simplicity of presentation, consider

the above case of three fractions and assume that Uk = {u′, u′′} for each k. This collection of controls is not

unrealistic since u′ could represent no adjustment and u′′ could represent a pre-calculated adjustment to a known

alignment error. In this case, we are trying to decide whether or not to adjust the patient on any particular fraction.

A schematic depicting the problem of solving the DP is shown in Figure 8. In this figure there are two possible

dose states after the first fraction, D1(u′) or D1(u′′), which depend on the control used to deliver the first

fraction. Similarly, there are two possible dose states following the second [and third] fraction, D2(u′) and

D2(u′′) [D3(u′) and D3(u′′)]. Notice that to achieve the dose D2(u′) we could have used control u′ to deliver

the first and second fractions, a course of treatment represented by the path from D0 to D1(u′) to D2(u′), or we

could have alternatively used control u′′ in the first fraction and control u′ in the second, a possibility represented

by the path from D0 to D1(u′′) to D2(u′). Each edge is assigned the value f(Dk(u′), u′) or f(Dk(u′′), u′′)

depending on which control is considered. So, the value of 2 on the edge from D0 to D1(u′′) shows that if we use

control u′′ to deliver the first fraction, then the maximum voxel deviation from the (updated) uniform fraction

is 2 Gy, whereas the value of 1 on the edge between D0 and D1(u′) shows that the maximum voxel deviation is

1 if control u′ is used instead. This may appear as though it is better to use control u′ to deliver the first frac-

tion, but this may not be the case depending on the deviations imposed by this choice on the subsequent fractions.

To solve the DP with a forward technique we first consider the two possible dose states after the first

fraction. Since there is no choice in how to achieve these states from D0, the edges between D0 and

D1(u′) and between D0 and D1(u′′) are included as part of a possible optimal sequence of controls, which is

illustrated in Figure 9 by thickening the edges. In relation to (24), this considers both possible values of f(D1, u0).

We continue by moving to the second fraction. If we select u′, then we realize a maximum voxel violation of

either 3, in the case that u′ was used for the first fraction, or 1, in the case that u′′ was used for the first fraction.
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Figure 8. A depiction of the possible control se-
quences for dynamic programming.
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Figure 9. The optimal sequences to the possible
dose states are indicated by the thicker
edges.

This gives a cumulative, maximum voxel violation of either 4 or 3, and since 3 is smaller, we know that if the

optimal control sequence includes using u′ to deliver the second fraction, then we should use u′′ in the first

fraction. This information is shown in Figure 9 as a thick edge between D1(u′′) and D2(u′). Notice the edge

between D1(u′) and D2(u′) remains thin since it is not possible to use u′ for the second fraction after using u′ for

the first. A similar argument shows that if we use u′′ for the first fraction, then we should use u′′ for the second

since this gives a cumulative, maximum violation of 3 instead of 4. Returning to the mathematical description

in (24), we have decided which control u0 should be depending on which control we use to deliver the second

fraction. Importantly, we have considered all 4 possible values of f(D1, u0) + f(D2, u1) and discarded two, those

for which u0 = u′ and u1 = u′, and u0 = u′ and u1 = u′′.

The solution procedure terminates by repeating the analysis for the third fraction. From the previous paragraph

we know that the smallest cumulative, maximum violation after the second fraction is 3 at either D2(u′) or

D2(u′′). The least additional violation that can be achieved to reach D3(u′) is 2, and the edge between D2(u′)

and D3(u′) with this value is thickened. Likewise, we include the edge between D2(u′′) and D3(u′′) since this

gives the smallest cumulative, maximum violation of 4 at D3(u′′). Based on our metric, we would select the

control sequence u′′ for each fraction since this minimizes the aggregate of the maximum voxel violations over the

course of treatment. The cumulative dose may or may not be the same at D3(u′) under the control sequence u′′

for the first fraction and u′ for the second and third fractions. Although this sequence has a higher cumulative,

maximum deviation, these violations could occur in different voxels, and hence, it is possible the anatomical

dose is the same. Indeed, the dose may in some ways be better. This observation might seem odd since the

integral dose is what is evaluated in treatment design. However, the delivery problem is trying to best match

the expected uniform fractionated dose over the entire treatment, and since the uniform fractions are important

radiobiologically, this is reasonable.
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The backwards techniques are nearly identical except that they propagate through the stages in reverse order.

The power of both methods is that they forgo a search over all possible control sequences. In the example above,

only 2 control sequences are identified out of the possible 8. The other 6 are discarded since they are identified

as being incapable of being optimal.

Returning our focus to the clinical problem of adjusting the fractional doses to optimize delivery, we note

that the above model assumes a priori knowledge about the adjusted patient coordinates for each fraction, i.e.

the adjustment matrices W k need to be known before the adjusted fractional doses are calculated, which is

unrealistic. There are several imaging modalities that support patient relocation while the patient is on the

couch, but clairvoyantly forecasting future patient positions is not possible. In this situation it makes sense

to consider random patient adjustments in which each element of W k is assumed to be randomly distributed.

Mathematically we can consider any collection of distributions, but of course, in practice they should approximate

the relocation process. In such a stochastic program the objective function is a random variable, and it is natural

to consider the expected value of the objective. This is what is considered in [17]. Stochastic problems are

generally harder to solve than their deterministic counterparts, and the authors of [17] use a technique called

Neuro-Dynamic Programming to approximately solve the problem. While a full explanation of this method is

beyond the scope of this article, the essence of the method lies in a Monte Carlo simulation that estimates the

inner minimization at each iteration. The results consistently show that the expected error is reduced by solving

a DP as compared to uniform fractions, for which improvements are significant, and to a reactionary regime

that re-calculates the next fraction as the remaining dose to be delivered divided by the number of fractions

remaining, for which there is less improvement.

Although solving a DP is not as systematic as other optimization problems, the modeling flexibility together with

the ability to handle time-dependent decisions lends itself well to many design questions. DP has lead to major

computational advances in computational biology and has continued to be a major theme in engineering, but it

has not played a significant role in Medical Physics. In the authors’ opinion, this is a promising research direction

that could assist many clinical problems.

4.3. Constraint Programming

The field of constraint programming spans computer science and mathematical programming and is concerned

with the study of satisfying constraints that are stated in a natural and logical manner. Although the focus is

on constraint interrogation and satisfaction, such problems include the majority of optimization problems due to

the Lagrange conditions (4). This important area of research has not yet made a significant impact on Medical

Physics, but since constraint programming is focused on computing, we suspect that there is a wide-range
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of applications in Medical Physics. We discuss the recent work in [3] and [8], which shows that constraint

programming leads to favorable results to the NP-hard problem of minimizing the number of apertures needed

to achieve an intensity map (19). For further reading, we direct interested readers to [16] as an introduction to

constraint programming.

Assuming qi0b = 0, we find that the last three constraints in (19) can be stated as

n∑
j=1

max{qijb − qi(j−1)b, 0} ≤ nb for all i, b,

and it is this aggregated constraint that counts the number of apertures that are used to deliver the treatment.

Since minimizing the number of apertures is NP-hard, this constraint is critical to solving a computationally

difficult problem, and finding small values of nb that maintain feasibility is important. This constraint can be

decomposed into linear constraints; one such decompositions is presented in (19), and is also used in [3]. Another

from [8] is

sijb = qijb − qi(j−1)b, wijb = max{sijb, 0},
n∑

j=1

wijb ≤ nb, (25)

where sijb is the same as in (19) and wijb is a newly introduced variable. We want to deduce small values of nb

that subsequently lead to either optimal or near optimal objective values. The third inequality in (25) provides

a lower bound on nb, and hence, we want to search for wijb so that the summation defining the lower bound is

small and so that the overall system remains feasible. This means we want to shrink the domains of the variables

in a way that removes non-optimal solutions. The process of reducing variable domains is called constraint

propagation in constraint programming, and an algorithm that details a specific technique is called a propagator.

As a simple example of the deduction process, consider the case of the decomposition in (25) for which i and b

are fixed and for which there are three integer variables qi1b, qi2b, and qi3b. Suppose that other design concerns

ensure that qi1b = 0, qi2b ∈ {0, 1} and qi3b = 1. In this situation we deduce that wi1b = 0, wi2b ∈ {0, 1} and

wi3b ∈ {0, 1}, and hence, nb ≥ 2. However, qi2b cannot be both 0 and 1, from which we see that either wi2b

is 0 and wi3b is 1, or that wi2b is 1 and wi3b is 0. This means nb ≥ 1 in actuality. In this case the variable

domains/bounds in and of themselves do not propagate to the smallest lower bound, and in such a case we say

that the decomposition does not propagate completely. The decomposition in (19) similarly fails to propagate

completely.

A propagator to improve the calculation of the lower bounds on nb is presented in [8]. For each i and b, the

propagator performs three passes through the j index. A forward pass calculates a lower bound on nb that is

based on the ranges of each wijb. This lower bound is denoted by n′b. A backward pass finds a smallest and

largest value of each wijb, denoted by w′ijb and w′′ijb respectively, so that the summation of both the largest and
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smallest values achieves the lower bound of n′b. At this point it is natural, but misleading, to think that we have

solved the segmentation problem since we have found a smallest value of each nb based on the ranges of each wijb.

However, we have not satisfied the the first constraint in (19). This constraint may force wijb to assume values

outside [w′ijb, w
′′
ijb], and the domain reduction pass updates these bounds to reflect this necessity. The result of

the propagator satisfies a property called bounds consistency, which unfortunately is not uniquely defined [11].

However, in this setting the property means that the lower bounds n′b and the objective value
∑bmax

b=1 n′b is possibly

optimal since there is an associated feasible solution that provides this objective value. Moreover, the calculation

of this value is efficient. The use of this propagator over other decompositions impressively improves computation

time, with the results in [8] showing speed-up factors ranging from 2.3 to 23.8. So, even in the least successful

case this propagator reduces the solution time by over half of the other methods.

4.4. Global Optimization

Global optimization is the study of problems that may have multiple local optima, and much of the study is about

deciding which of the local optima are indeed global optima. Problems can be continuous or discrete. The field

is often concerned with solving problems that are not directly approachable with standard and provably optimal

techniques from other areas of optimization. For example, minimizing a strictly convex, quadratic function would

not be part of the study of global optimization since there are numerous ways to solve such a problem exactly.

From this perspective, global optimization problems are among the most difficult to solve since we typically

don’t have a mathematical certificate of global optimality. However, there are many meaningful global problems,

see for example the treatment design problems in [10] and [58] and some of the image registration problems

in [48]. Solving these problems is an important area of research, and we point readers to the supplement on

Global Optimization found at the Mathematical Programming Glossary [45] and to the Handbook on Global

Optimization [40].

Global optimization’s impact on Medical Physics has largely been in the area of heuristic search, with simulated

annealing and genetic algorithms being popular optimization methods, see for example [10, 18, 26, 29, 56]. Since

these methods are generally understood in the Medical Physics literature, we forego a detailed discussion of

these heuristics. Moreover, even a shallow presentation of the plethora of methods within the discipline would

in itself constitute a complete review article, and our goal is to mention a couple of the central alternatives to

simulated annealing and genetic algorithms so that readers can investigate other techniques. We also want to

give a few words of caution. Heuristic methods, such as simulated annealing, are in many ways marvelous since

they accommodate nearly any optimization problem and are easily implemented. However, they typically do not

provide a guarantee of optimality, and while they may calculate good solutions, the lack of such a guarantee

eliminates a factual basis of how much better a solution could be. We encourage readers to use exact methods

that provide such a guarantee if possible. For example, least-squares problems are convex and can be solved
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efficiently with standard quadratic solvers. Simulated annealing may give an equally good solution, but upon

termination, the algorithm itself doesn’t ensure confidence that the solution is optimal.

One collection of heuristics partitions the domain of the objective into regions and then uses a local search

method to find a local minimum. This idea works well if the function has ascertainable analytical properties

over the individual regions, a condition not always available. Algorithmic decisions include a method to

sub-divide the domain and the selection of the local search method, which can vary from region to region.

Another heuristic is tabu search by which moves are forbidden for a few iterations of the algorithm, a

paradigm that allows the method to search portions of the domain that may at first appear less promis-

ing than others. Tabu search is arguably the most popular meta-heuristic, which is a collection of methods

that search through the feasible region. Variations and applications are wide ranging, and we point readers to [25].

The fact that most heuristic methods are tailored to the specific problem makes their implementation difficult

to automate. However, there are a few software packages that link to modeling systems like AMPL. Reviews

of software packages are found in [47]. We specifically mention LGO [46], which interfaces with a variety of

supporting software packages like AMPL, GAMS, MATLAB, and MAPLE. This software was used to design

radiotherapy treatments in [58].

5. Multiple Objective Problems

In this section we focus on optimization problems that contain several objective functions that are to be minimized

simultaneously. Hence (2) becomes

min{(f1(x), . . . , fp(x)) : g(x) ≤ 0}. (26)

Multiple objective problems can be convex, discrete, or any other type of optimization problem. We first

need to specify what minimization means since feasible solutions may not be comparable due to the fact that

each feasible solution is evaluated with a vector of values, e.g. is (1,2) smaller than (2,1) or vice versa? We

let F (x) = (f1(x), . . . , fp(x)) and introduce the notation of an efficient solution (or Pareto optimal solution).

A feasible solution x̂ of (26) is called efficient if there does not exist another feasible solution x such that

fk(x) ≤ fk(x̂) for all k = 1, . . . , p and f(x) 6= f(x̂). In multiobjective optimization it is useful to consider the set

of all feasible outcomes. Recall that X = {x ∈ Rn : g(x) ≤ 0} is the feasible region of (26). The function F maps

X to Y = {F (x) : x ∈ X}, the outcome set of (26). In single objective optimization Y is simply a half-line or

an interval and minimization means finding the left endpoint of that line or interval. For optimization problems

with p ≥ 2 objectives, Y exists in a p-dimensional space and there is no such thing as a unique minimum in a

p-dimensional set. All outcomes on the lower left boundary of Y are incomparable and share the property that
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Y does not contain any other outcome that is located both to the left and down from the point. We call those

outcomes nondominated outcomes of the multiobjective optimization problem (26). An efficient solution x ∈ X

defines a nondominated outcome y = f(x) ∈ Y .

The above discussion shows that solving a multiobjective optimization problem means finding efficient solutions

of (26). This can be interpreted as finding all efficient solutions or one efficient solution for each nondominated

outcome in Y . The former is analogous to finding all optimal solutions in a single objective optimization problem.

This is different from the latter, because there are usually many feasible solutions with the same outcome. Hence

the more common interpretation, and the one more aligned with the usual single objective practice of finding one

optimal solution, is the latter. Moving from one efficient solution to another implies that at least one objective

improves, whereas at least one deteriorates, i.e. there is a tradeoff between the different objectives.

There are several types of solutions due to the sense of minimization and the difference between the feasible

region and its image under F . A feasible solution x̂ ∈ X of a multiple objective optimization problem (26) is

(strictly/weakly) efficient if there is no x ∈ X such that (F (x) ≤ F (x̂)/F (x) ≤ F (x̂)) F (x)F (x̂). Here F (x)F (x̂)

indicates F (x)F (x̂) but F (x) 6= F (x̂). The outcome ŷ = F (x̂) is called (weakly) nondominated. A strictly efficient

solution x̂ does not allow another x such that F (x) = F (x̂). Moreover, an efficient solution x̂ is called properly

efficient if there is a real number M > 0 such that for all x and i with fi(x) < fi(x̂) there is an index j such that

fj(x) > fj(x̂) and (fi(x̂)− fi(x))/(fj(x)− fj(x̂)) < M , i.e. the tradeoffs are bounded.

Example 5.1.
We illustrate the concept of a multiple objective optimization problem with a small example of fluence map
optimization. Assume that there are only two voxels, one (the top row) being a tumor voxel, which is to be
treated with a dose of 60 Gy, and the other (the bottom row) being an organ at risk, which is to receive no
radiation. Let the dose matrix be

A =

(
0.5 0.3

0.45 0.28

)
,

i.e. there are also only two bixels.
It is clear that it is possible to achieve the zero dose to the organ at risk with the zero fluence x = 0, and it is
also clear that the target dose of 60 Gy to the tumor is possible with, for example, x = (120, 0)T . In this case
Ax = (60, 54)T . The former solution fails to treat the target, and the latter delivers 54 Gy to the organ at risk.
Applying the infinity norm model (12) with equal λ for PTV and OAR we obtain a solution of x = (63.16, 0)T

with an under dose to the tumor and an over dose to the organ at risk of 28.42 Gy. But these are not the only
options. In fact, with every increase of x1 by one monitor unit, the dose delivered to the tumor voxel will get
0.5 closer to 60, but the dose to the organ at risk voxel will also increase by 0.45 and deviate away from the
goal dose of 0. Hence, any fluence x = (x1, 0)T with 0 ≤ x1 ≤ 120 is an efficient solution of a multiple objective
optimization problem, where we simultaneously minimize the under dose to the tumor voxel (say z1) and the over
dose to the organ at risk voxel (say z2). This multiple objective program is

min

{(
z1

z2

)
:

(
0.50 0.30

0.45 0.28

)(
x1

x2

)
+

(
z1

z2

)
≥

(
60

0

)
;

−

(
0.50 0.30

0.45 0.28

)(
x1

x2

)
+

(
z1

z2

)
≥

(
−60

0

)
; x, z ≥ 0

}
.
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In fact, the tradeoff between the two goals is constant and equals 10/9 of increase in z1 for every unit of decrease
in z2.

The methods to solve multiobjective optimization problems depend on the type of problem, just as in the single

objective case. We mention the most important facts and refer readers to [19] for a comprehensive introduction

to multiobjective optimization. We first discuss solution methods for convex problems. The fundamental results

for convex multiobjective optimization problems are summarized in the following theorem.

Theorem 5.1.
Assume that all objective functions and all constraints in (26) are convex. Then the following hold.

1. A feasible solution x̂ is weakly efficient if and only if there is a vector λ ∈ Rp, λ0 such that x̂ is an optimal
solution of the single objective optimization problem

min

{
p∑

k=1

λkfk(x) : g(x) ≤ 0

}
. (27)

2. A feasible solution x̂ is properly efficient if and only if there is a vector λ ∈ Rp, λ > 0 such that x̂ is an
optimal solution of (27).

3. If, moreover, all objectives and constraints are linear, then a feasible solution x̂ is efficient if and only if
there is a vector λ ∈ Rp, λ > 0 such that x̂ is an optimal solution of (27).

It is important to notice the slight differences between the three statements. In fact, convex multiobjective

optimization problems allow the characterization of weakly and properly efficient solutions via optimal solutions

of (27) – distinguished by a nonnegative nonzero and positive λ, respectively – but not necessarily that of efficient

ones. For linear problems, however, all efficient solutions are properly efficient (i.e. all trade-offs are bounded)

and this difference disappears.

Theorem 5.1 is a powerful result when solving convex multiobjective optimization problems because it suggests

we can solve (26) by repeatedly solving the single objective problem (27) for different λ vectors. However,

deriving algorithms from the theorem is non-trivial. For linear multiobjective programming problems this leads

to a variety of algorithms extending single objective simplex algorithms or algorithms that attempt to compute

the set of nondominated outcomes.

Noting that it is always possible to scale λ so that
∑p

k=1 λk = 1, there is a temptation to interpret the coefficients

λk as weights of importance of the objectives. However, the mathematical theory does not warrant that

interpretation: The theorem does not help in constructing a λ vector that makes a particular solution efficient,

i.e. determine the weights that ensure x̂ is an optimal solution of (27). There can indeed be infinitely many

(very) different λs that result in the same efficient solution. Furthermore, slightly different λs may result in very
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different efficient solutions. In Example 5.1, noting that the problem is linear, applying the simplex algorithm to

solve the weighted sum problem will, for any choice of λ > 0, always result in either x = (120, 0)T or x = (0, 0)T

as the optimal solution. This is a property of the solution algorithm, which needs to be considered.

For nonconvex (such as discrete) optimization problems there exist efficient solutions that are not optimal

solutions of (27) as the following observation shows. Consider a multiobjective optimization problem with

three outcome vectors, i.e. X = Y = {(1, 5)T , (4, 4)T , (5, 1)T }. Clearly minimizing λ1x1 + λ2x2, or equivalently

µx1 + (1−µ)x2 (where µ = λ1/(λ1 +λ2)), over X results in either (1, 5)T if 0.5 ≤ µ ≤ 1 or (5, 1)T if 0 ≤ µ ≤ 0.5,

but never in (4, 4)T . Nevertheless, (4, 4)T is efficient. From this we see that not every efficient solution is the

result of a weighted sum of the individual objectives, if feasible set or objectives are not convex, i.e. the results of

Theorem 5.1 are not guaranteed without convexity. Moreover, the interpretation of λ as importance weights has

no meaning for nonconvex multiobjective optimization problems. Hence, to solve nonconvex multiple objective

optimization problems, methods not relying on Theorem 5.1 are required.

Somewhat contrary to the lack of interpretation of λ, the idea of identifying efficient solutions by solving

substitute, single objective optimization problems is prevalent. These substitute problems depend on the

variables, objectives, and constraints of (26) and some additional parameters, which we collect in a vector µ. The

resulting single objective problem is min s(f, g, x, µ) and is solved for different values of µ. E.g. in problem (27),

the parameter µ is the weigt vector λ and function s is the weighted sum of the components of f . This technique

is called solving (26) by scalarization. Mathematically, scalarization is justified by showing that (a) for each

choice of µ an optimal solution of min s(f, g, x, µ) is a (weakly, strictly, properly) efficient solution of (26) and

that, vice versa, for every (weakly, strictly, properly) efficient solution x of (26) there is a value of µ such that x

is an optimal solution of min s(f, g, x, µ). The precise mathematical properties of a scalarization method depend

on the characteristics of the multiobjective problem as well as on the properties of s and µ. We refer to [19] and

[23] for a summary of different scalarization techniques. The most popular of those is the ε-constraint method.

The idea is to convert all but one of the objective functions of (26) into constraints fk(x) ≤ εk for k 6= j while

maintaining minimization of the objective function fj in the scalarized problem. This method can be applied to

nonconvex and discrete problems, i.e. it can be shown that all efficient solutions are optimal solutions of some

ε-constraint problem. Unfortunately, the resulting single objective problems are often difficult to solve.

Returning our discussion to Medical Physics, notice that the goal of radiation therapy is to treat the tumor

while at the same time protecting organs at risk and normal tissue form the adverse effects of radiation. Thus

radiotherapy pursues multiple and conflicting goals, making the multiobjective nature self evident. The earliest

multiobjective optimization models for fluence map optimization are [15] and [31].
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Consider (12). This is actually the weighted sum scalarization of Theorem 5.1 applied to the multiobjective

optimization problem

min {(‖D(x)− T‖p, ‖D(x)− T‖p

‖D(x)− T‖p, ‖D(x)− T‖p) : x ≥ 0} . (28)

We are assured that for every choice of the weights in (12) an efficient solution of (28) is obtained. This means

that solving (12) yields a fluence map in which not all of the p-norm deviations from the prescripted dose for

the target, organs at risk, and normal tissue can be improved simultaneously. As mentioned in Section 2, it is

necessary to choose appropriate λ values to obtain a suitable fluence map. The multiobjective model, however,

provides a wider perspective. We first note that only efficient solutions of (28) are meaningful candidates for a

fluence map in clinical practice. The problem then becomes that of finding a suitable efficient solution. Theorem

5.1 assures that this can be found with appropriate weights λ. Yet the unknown relationship between these

weights and efficient solutions often leads to a trial-and-error process of adjusting the weights in (12) and resolving

the problem until a satisfactory solution is found. Here lies the pitfall of applying multiobjective optimization –

just choosing a set of weights and computing the corresponding solutions is not sufficient. Observing that most

fluence map optimization problems (without DVH constraints) are convex it is possible to exploit Theorem 5.1

and design algorithms to access the set of nondominated outcomes or efficient solutions of (28) in a meaningful

way. This approach is pursued in [32].

For the cases of the 1- and infinity-norms, problem (28) becomes a multiobjective linear program. The research

in [54] and [55] presents algorithms to approximate the nondominated outcomes of this MOLP to any prescribed

accuracy for the infinity norm case. The authors of [53] present a method to find a finite set of efficient solutions

that are guaranteed to cover the set of nondominated outcomes. In Figure 10 we show the nondominated set of

our acoustic neuroma case using a similar model to (28) with p =∞, where, however, the deviations for the brain

stem and the eye are considered together as ||DOAR(x) − TOAR||p. Thus, this problem has three objectives,

and the nondominated solutions can be displayed in a 3-dimensional figure. Note that the axes in this figure

measure the maximal deviation of delivered dose from the prescripted dose for the PTV (α), the OARs (β), and

the normal tissue (γ). Figure 11 shows a set of nondominated points from the set shown in Figure 10. Note that

each point in Figure 11 defines a different treatment plan with its own characteristic tradeoffs between achieving

the target doses for the PTV, the organs at risk, and the normal tissue.

To comment briefly on a discrete multiobjective optimization problem in Radiation Oncology, we refer to Example

3.1, where we have seen that minimizing beam-on time and minimizing set-up time are contradictory objectives in

the optimal segmentation of fluence maps. Hence, the segmentation problem can be formulated as a biobjective
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Figure 10. The nondominated set of a multiobjective fluence
map optimization problem for the acoustic neu-
roma case (from [54]).
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Figure 11. A representative set of nondominated set from Fig-
ure 10 (from [53]).

optimization problem with one objective being to minimize beam-on time and the other being to minimize set-up

time. This fact has been used in [59] to solve the segmentation problem with the objective to minimize total

treatment time, which is a weighted sum of the beam-on time and set-up time (number of apertures). The

importance of this multiobjective optimization problem for clinical practice remains to be seen, however, because

both [21] and [33] observed that there are only a few efficient solutions. It appears that navigating the tradeoffs

is possible.

6. Conclusion

Optimization’s supportive role in the field of Medical Physics is growing, and as we have discussed here, the

spectrum of applications is wide. The essential optimization problems already applied to clinical problems will

continue to adapt to increasingly sophisticated technology, and the complexity and size of the resulting opti-

mization problems will grow. For this reason, the modeling and solution methods will need to be kept current

to approach clinical demand. Also, new problems are, and will be, emerging that will require new models and

possibly new solution methods. As the Medical Physics community addresses these challenges, the authors hope

that this article demonstrates the value of an OR approach.
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