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ABSTRACT 

It was the aim to develop and test a measurement technique for the source position of an afterloading system using an 

electronic two-dimensional detector array (2D array). A "GammaMed plus IX" high dose rate afterloading device (Va-

rian Medical Systems, Palo Alto, USA), and a Seven29 2D detector array (PTW Freiburg GmbH, Freiburg, Germany) 

have been used. A hollow needle has been connected to the afterloading device. Its outer diameter is 3.0 mm and its 

length about 220 mm. A 14 mm thick Perspex slab was fixed in a reproducible position on the 2D array. Above the 14
th

 

detector row, a groove was cut in the slab which accommodates the hollow needle in a fixed position relative to the 2D 

array. In order to define the position of the source, the signals of the detectors in the 14
th

 detector row have been eva-

luated. A theoretical curve depending on the source position and strength has been fitted to the acquired detector signals. 

It has been shown that the mean reproducibility of the measurement technique - including the reproducibility of the 

source placement - was within 0.15 mm. This method can not only replace film measurements, it is also more exact and 

less time consuming. 

Keywords: high dose rate brachytherapy, afterloading, dwell position, calibration, measurement, 2D detector 

array  
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1. INTRODUCTION

Due to the local dose deposition next to the tumor, high-dose-rate brachytherapy (HDR) has been an established method 

in the fields of radiotherapy for a long time [1]. When the afterloading technique is used, the source is introduced in the 

patient via an applicator probe which is placed in the patient in advance of the irradiation. Depending on the tumor loca-

tion, different methods and applicators are applied: Sharp hollow needles can be inserted directly into the tumor region 

and connected with the afterloading device, e.g. for cancers in the head and neck [2] or prostate [3]. Gynaecological 

tumors are treated by inserting cylindrical applicators with a suitable diameter in the vagina, or a tube in the cervix [4]. 

Intraluminal applicators are used for lung and esophagus [5] tumors.  

Quality assurance procedures are described in a variety of regulations [6, 7]. From the physics point of view, among 

others the dwell time, dwell position and the strength of the radioactive source have to be included in the quality assur-

ance procedures. The Swiss recommendations state that the accuracy of the source position has to be better than 2 mm. 

The calibration of the source position is usually performed with films. Different procedures have been suggested to regu-

larly check the source positions: A transparent test phantom is monitored with a video camera, or a check ruler or a film 

are used [6]. 

In order to measure the position and the transit time of the radioactive source with a higher accuracy than with films, 

different measurement techniques have been developed. Rickey et al. [8] developed a quality assurance tool that com-

bined a radiochromic film (Gafchromic films, Wayne, USA) with photodiode detectors. The accuracy of the dwell posi-

tion was within 0.2 mm, and the dwell time was measured within about 1 ms. However, this method uses films and 

needs a processing machine and a film scanner. DeWerd et al. [9] designed a device that is able to measure the dwell 

position and time better than 1 mm and 1 s. They used a well ionization chamber which included a lead insert. The radia-

tion of the source was focused with a collimator. The signal response of the ionisation chamber showed a strong depen-
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dency on the source position relative to the collimator hole. However, this method is time consuming and sophisticated 

to implement.  

Until now, in St.Gallen the dwell position calibration has been performed based on film measurements (EDR2 ready 

pack films from Kodak, Rochester, USA). For this purpose, a hollow needle was connected to the afterloading device 

and fixed to the film surface. The needle tip was marked on the film with a pin prick. The source was placed by the after-

loading device at different positions. The irradiated film was processed („Optimax 2010" from PROTEC medical sys-

tems, Johannesburg, South Africa) and manually evaluated. When a deviation of the measured position to the expected 

one was stated, the afterloading device was re-calibrated, and then the measurement was repeated. Despite the high ef-

fort, the accuracy of this procedure is limited. Due to the high costs and the time-consuming handling, it had been addi-

tionally decided to develop a filmless method, which should not exhibit these restrictions. It should also be using mate-

rials which are available in our clinic and in the many other radiotherapy institutions. 

Two dimensional detector arrays (2D arrays) are widely used in radiotherapy for the quality assurance (QA) of different 

linear accelerator parameters and for dosimetric plan verifications [10, 11]. A 2D array based measurement technique to 

define the source position of an afterloading device is presented in this article. 

 

2. MATERIAL AND METHODS 

2.1 Material and measurement setup 

The irradiations have been performed with a "GammaMed plus IX" high dose rate afterloading device (Varian Medical 

Systems, Palo Alto, USA). The source is an IR-192 rod with an active length of 3.5 mm and a diameter of 1.1 mm. A 

hollow metallic needle has been connected to the afterloader via the flexible guide tube. The measurements have been 

conducted with the detector array seven29 (PTW Freiburg GmbH, Freiburg, Germany) with a total of 27 × 27 cubic 

detectors, arranged in a square grid with 10 mm spacing. The edge length of the cubic detectors is 5 mm. The 2D array 

acquisitions have been performed with the “MatrixScan” software (version 2.2., also from PTW Freiburg). 

A 14 mm thick Perspex plate has been fixed on the detector array in a reproducible position. It contains at the upper 

surface a groove to house the metallic needle (inner diameter: 3.0 mm; usable length: about 220 mm). The inner diame-

ter of the used catheter is 1.5 mm. The groove dimensions are 3.2 mm × 3.2 mm × 223.5 mm. By this means the source 

path in the needle is 20 mm above the detector centers in the 14
th

 detector row. An additional 4.5 mm thick Perspex plate 

is placed on top: it fixes the needle in the groove and provides for sufficient backscatter. The needle end is about 8 cm 

distant from the central detector of the array. The signals of the detectors in the 14
th

 row are evaluated to define the dwell 

position of the source. Further details of the plate construction are shown in Figure 1 and 2. 
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Figure 1. Top view on the 2D array (colored in transparent brown) and the Perspex plate (colored in transparent blue). The section of 

the source path, where measurements are supported without accuracy restrictions, is 15 cm long. 

 

 

 

 

 

 

 

 

 

Figure 2. Front view on the 2D array and the Perspex plate (not to scale). The black squares symbolize the detector chambers. 

 

For a sufficient accuracy of the calculated source position it is required, that the signals of the outer detectors in the 14
th

 

row drop down to less than 10% of the highest detector signal. With this restriction, 15 cm of the source path can be 

analyzed, including the furthest position at the needle tip.  

The measurement setup is shown in Figure 3. 
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Figure 3. Measurement setup. A: It is made sure that the applicator connecting the needle with the afterloading device is in a stretched 

position. B: The needle is fixed in the needle guide with a rubber band. C: Components of the measurement setup. The plate fixing the 

needle in the needle guide is shown at the right. 

 

2.2 Measurement method 

The measurement procedure (shown in Figure 4) ensures that the source does not move during a measurement.  
 

 

Figure 4. Measurement procedure for n single measurements at different source positions. Example: The source is 20 s at the ith posi-

tion. The user starts the array measurements, stops it after about 10 s and saves the measurement. Then, the source moves to the i+1th 

position, and so on. 
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The source position in the coordinate system of the afterloading device is 130 cm at the applicator tip, and 129 cm, when 

the source is retracted by 1 cm. The 2D array is switched on at least 15 minutes before the measurement for stable read-

ings. 

 

2.3 User interface 

Figure 5 shows the user interface of the Excel based measurement procedure. 

 

Figure 5. User interface of the measurement procedure. Twenty measurements, covering an "irradiated length" of 2 cm, are displayed 

in this example. The measurement values are encoded in red (high detector signal), yellow to blue (low detector signal). 

The raw data are read by pressing the <Input Data> button. Twenty single measurements are evaluated in this example. 

The intensity of the detector signal is encoded with different colourings. In the first measurement, the source position is 

about above the detector nr. 21. In the following measurements 2 – 20, the source then moves in 1 mm steps to detector 

nr. 19. The evaluation is initialized by pressing the <Calculate> button. The source position, the “source strength” and 

the “energy” are calculated. Details to these quantities are described below. 

 

2.4 Mathematical description of the evaluation method 

As stated before, only the signals of the 14
th

 detector row are evaluated. The evaluation principle is based on a compari-

son of the measured detector signals in the 14
th

 row with the calculated signals in this row. The source is assumed to be a 

one-dimensional rod. The signal of the i
th

 detector, Dc, is calculated as shown in equation (1): 

     

LV

a
c dldzdydxlzyxdSSpiD

,

,,,,,  (1) 

The constant S is proportional to the source strength, named in the following as “source strength” for convenience. V is 

the detector volume; L is the source length. The source position is indicated as p. dx∙dy∙dz represents a differential vol-

ume element in the i
th

 detector, dl is a differential element of the source. d describes the distance between the differential 

detector volume element and the differential source element. It is calculated as shown in equation (2):  

    222,,, zylxlzyxd    (2) 
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x, y, z, and l are the coordinates of the differential detector volumes and the source elements. The dwell position calcula-

tion is performed in the coordinate system of the 2D array: The y and z coordinates of the detector centres in the 14
th

 row 

are 0. The x coordinate of the i
th

 detector is i cm. 

The variable a in the exponent of equation (1) represents the distance dependance and should be equal to 2 if the distance 

square law would apply exactly. However, in order to take account of absorption processes, the exponent a was changed 

to a = 2.2. This value was determined experimentally by minimizing the difference between the calculated and measured 

values of multiple detector signals. 

Dc(i,p,S) is implemented in the code with the function TheoreticalValue. 

The parameters p and S are varied iteratively in such a way that the calculated detector values Dc(i,p,S) coincide with the 

measured ones as close as possible. Let now Dm(i,p, S) be the measured value of the i
th

 detector for the position p and the 

source strength S. Then the objective function T(p, S) reads like: 

       
2

i,p,SDi,p,SDp,ST cm
 (3) 

 

The sum involves all detectors in the 14
th

 detector row with detector signals larger than 10% of the maximum detector 

signal in the same detector row. T(p,S) describes the Pythagorean difference between Dm(i, p, S) and Dc(i, p, S) and is the 

square root of the error sum according to Gauss. When T(p,S) is at its minimum, the best values for p and S have been 

found, whereby ps is the calculated dwell position of the source: 

  },{));,(min( SpSpT,SpT ss    (4) 

 

2.5 Numerical implementation 

The program to calculate the source dwell positions has been written in Excel VBA (Visual Basic for Applications, Mi-

crosoft Excel Office 2007). In order to test the code behavior, some parameters in the code can be varied. The measure-

ments and calculations which are presented in this article are performed with the parameter values given in the article. 

The same values are the defaults in the excel file, which can be downloaded from the journal’s home page. 

 

2.5.1 Initialization of the iteration process 

Before the iteration starts, the detector values are read from the measurement files with the function ReadInMeasured-

Values. This function also determines the maximal measured value, MaxValue, and the corresponding detector number. 

The number of the detector showing the maximal detector signal is used as the initial source position, BestX. The initial 

value for the source strength, BestQ, is estimated by the maximum signal in the detector row: 

MaxValueBestQ  05736.0  (5) 

BestQ defines the magnitude of the calculated detector signals. The factor 0.05736 has been determined by experience, 

and will depend on the individual detector array. Only detectors that exhibit at least 1/10 of the maximum measured 

signal are evaluated (The value of the lower limit, UnderLimit, is set to 0.1). A total dwell position interval of 15 cm can 

be evaluated when this restriction is considered. Following to equations (3) and (4), the main procedure SourcePosition 

then calculates iteratively the source position and the “source strength”. 

 

2.5.2 Calculation of the expected detector signals 

Tests have shown that a division of the source by three differential sources and a division of the chamber volume by 

3×3×3 differential volumes provides a good compromise between accuracy and calculation speed. The value of the con-

stant which defines the fineness of the division, ZS, is therefore set to 3. By this means, the calculation sums over 3
4
 = 81 

differential volumes and sources per detector. The calculation is carried out in the function TheoreticalValue.  
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2.5.3 Calculation of the objective function 

Following to equation (3), the function CurrentEnergy determines the value of the objective function. It depends on the 

actual source position and the source strength. In order to minimize the value of the objective function, the correspond-

ing parameters are varied in the iteration.  

 

2.5.4 Iterative determination of the source position 

The source position is determined in the function SourcePosition by an alternating variation of the source strength and 

position variables and by calculating the associated objective function. When the variable with the smallest objective 

function is not at a border of the considered interval, the interval and the step size are downsized. The iteration stops 

when the step width for the position and source strength variables fall below the value of the variables SmallestStepX and 

SmallestStepQ. The function SourcePosition has three components. The first component contains the source position, the 

second one the source strength and the third component the value of the objective function. These parameters are shown 

in Figure 5 at the bottom left; indicated as “position”, “activity” and “energy”. 

 

2.6 Calibration 

As described above, the VBA code calculates the source position in the coordinate system of the array. This differs from 

the coordinate system of the afterloading system. In both coordinate systems the value of the dwell position decreases 

when the source is retracted in the treatment tube. As it will be shown in the results, the relation between the indicated 

dwell positions is linear: 

bxax DetectorrAfterloade    (6) 

The values for a and bare determined in the course of the calibration. Since the detector distance is 1 cm, it can be ex-

pected that the value for a has to be close to +1. The measurements for the calibration were performed immediately after 

a calibration of the source position, which has been performed with film. Therefore it is assumed, that the source is posi-

tioned by the afterloading device correctly. The needle guiding plate and the needle were set up new before each mea-

surement series. The parameters a and b were determined by a linear fit. Five measurements have been performed al-

ways at two subsequent days. The stated positions (set at the afterloading device) have been 130, 129..., 115 cm. The 

measurement time was 10 s. For the linear fit, the mean of ten measurements per source position has been used. 

 

2.7 Tests of the measurement method 

To test the measurement method, several measurements were performed. The flexible plastic guide tube, connecting the 

metallic needle to the afterloading device, was always carefully laid out straight, without actually pulling the needle. As 

shown by Palmer et al. [12], the effect of a bent catheter can cause deviations of several millimeters for the dwell posi-

tions. 

 

2.7.1 Linearity of the measurement method 

As an ideal situation, the correlation between the dwell position, which is selected by the afterloading device, and the 

measured position should be linear. Due to the symmetry of the measurement device and the evaluation algorithm, a 

non-linearity would give rise to the typical measurement characteristics shown in Figure 6 as an example. 
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Figure 6. Typical non-linear behavior of the measurement system: 

It is assumed that the detectors of the 2D array have a perfect 

geometry (for instance identically constructed, detectors are equi-

distant arranged on a line and show identical sensitivities) and that 

the calibration is free from error. When the source is placed at 

points superior a detector or exactly in-between two adjacent 

detectors, no measurement error is present. These points act as 

benchmarks of the measurement technique. The deviation in the 

diagram has therefore to show point symmetry relative to these 

benchmarks. The drawing is not to scale. 

 

 

 

The linearity of the measurement method was tested, whilst the source was placed by the afterloading device in arbitrary 

positions between the detectors. Two measurement series have been performed on different days. The needle guiding 

plate and the needle were set up new before each measurement series. The distance between adjacent dwell positions 

was 1 mm. The investigated source travel length was 5 cm. The dwell time was about 10 seconds for each position.  

 

2.7.2 Influence of the source movement  

The calibration of the measurement method has been performed with the procedure shown in Figure 3. It ensures that the 

source movement is not smearing the profile of the detector signals and in this way shifting the calculated source posi-

tion.  

To check the influence of the source movement on the registered source position, the procedure has been altered: The 

measurement interval included among the dwell time of the source at its designated position also the time when the 

source was moved to this position and when it was retracted in the afterloading device. The tests have been performed at 

the 123 cm position, where the source is nearly above the central detector of the array. The considered dwell times were 

0.5, 1.0, 2.0, 5.0, 10.0, 15.0, 20.0, 30.0, 45.0 and 60.0 s. For each dwell time, 5 measurements were performed. The 

measurement setup was not changed during this measurement series. 

 

2.7.3 Influence of the array switch on time 

It is recommended by PTW that the 2D array should be switched on at minimum 5 minutes before a measurement is 

performed. It was tested if the measured dwell position depends on the switch on time of the detector array. For this 

purpose three measurement series have been acquired. Eight source positions per series have been investigated. The 

starting position was at 130 cm, and the step width was 2 cm. The dwell time was 10 s. 

Two measurement series were performed with a switch on time smaller than 5 minutes. One series was done with a 

15 minutes switch on time. The needle guiding plate and the needle were set up new before each measurement series. 

 

3. RESULTS  

3.1 Calibration 

The result of the calibration is shown in Figure 7. The slope of the linear fit function is a = 1.0014, and b amounts to 

108.92. The coefficient of determination, R, is 0.9999995. The mean standard deviation of the mean “measured source 

position” is 0.015 cm. 
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Figure 7. Determination of the transformation parameters a 

and b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to check the calibration, the measurement files used to derive the a and b values are evaluated with the calibra-

tion presented above. Figure 8 shows the difference between the measured and the stated source positions.  

 
Figure 8. Evaluation of the measurements used for the cali-

bration. Each measurement series is based on five single 

measurements for each source position. 

 

 

 

 

 

 

 

 

 

 

 

 
 

The mean deviation of the stated to the measured source position of a single measurement is 0.014 cm. The mean abso-

lute deviation of the considered measurement series is 0.013 ± 0.003 cm. Since the measurement series and the calibra-

tion are not independent, this test is not really suitable to characterize systematic errors, however. The maximum devia-

tion from the stated source position was 0.045 cm. 88.8% of the measured deviations were smaller than 0.020 cm. 

 

3.2 Linearity of the measurement method 

The evaluation of the linearity test is presented in Figure 9. The mean absolute deviation of a single measurement from 

the stated position is 0.012 ± 0.008 cm. The mean absolute difference between the series is 0.022 ± 0.004 cm. 

The data points have been grouped with respect to the relative position to the adjacent detectors. The group indicated 

with “x.0” includes the measurements at the source positions 130.0, 129.0 … 125.0 cm, the group indicated with “x.1” 

includes the measurements at the source positions 129.1, 128.1 … 125.1 cm, and so on up to “x.9”. The mean deviation 

is always in the [0.010, 0.016] interval. The interval width is therefore about 0.006 cm. The groups “x.0” and “x.1” show 

larger deviation. But this is valid also for the corresponding standard deviations which qualifies this statement. 
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The b value of the linear calibration function is 108.92. When a non-linearity would be present, the “x.9” and the “x.4” 

group should present the smallest deviations. This does certainly not apply for the “x.9” group. Independent of this 

statement, a possibly present deviation from a linear measurement behavior affects the measurement accuracy by less 

than the half of the interval width, which is 0.003 cm.  
 

Figure 9. Left diagram: Mean deviation of the measured to the stated source position. Right diagram: Mean deviation of the grouped 

source positions. 

3.3 Influence of the source movement 

Figure 10 shows the mean detector signals for five measurements and dwell times from 0.5 s to 60 s. The detector values 

are normalized to the maximum signal of the corresponding measurement. The standard deviation per measurement 

position is in the mean 0.5% of the maximum detector signal and therefore not indicated in Figure 10. The source enters 

from the left side (detector 1) of the diagram and moves initially to the position at the needle tip which corresponds to 

130 cm in the coordinate system of the afterloading device. This position lies next to the detector number 21, as incorpo-

rated in the calibration and seen also in Figure 4. By moving towards the foremost position in advance of an irradiation 

series, the afterloading device checks if the applicator assembly is of the required total length, and if it is fixed properly 

to the afterloading device. 

 

Figure 10. Dependency of the signal slope on the 

dwell time when the source movement is included 

in the measurement time interval. Each curve is 

based on five measurements. 

 

 

 
 

 

 

 

 
1 

For small dwell times, the signal originating from the reversal point of movement is in a comparable order as the signal 

generated at the provided dwell position. It would be obvious that the registered dwell position is translated by this ef-

fect. When the dwell time is elongated, the normalized shape of the detector signals approximates asymptomatically to 

dwell time = 60 s 

dwell time = 2 s 

dwell time = 0.5 s 

dwell time = 1.0 s 

… 
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the “calculated” shape of the detector signals. As stated above, the “calculated” shape is based on an acquisition which 

does not include source movements.  

Figure 11 shows the measured and corresponding calculated detector signals when the dwell time is 0.5 s. The deviation 

of the measured to the calculated detector signals is caused on the left side of the signal peak when the source is moved 

from the afterloading device to the provided position, and later back to the afterloading device. The deviation on the 

right side of the peak is caused by the movement to the needle tip and then back to the provided source position. 

Despite the signal contributions of the moving source, the peak of the calculated signal shape, which is based on the 

measured asymmetrical detector signals, is surprisingly close to the peak of the measured signal profile. 

 
Figure 11. Measured detector signals for a 0.5 s 

dwell time, and corresponding calculated signals. 

Although the shapes of the profiles differ markedly, 

the peaks of the curves lie at very similar positions. 

It must be expected that this behaviour does not 

apply when the source is placed away from the 

centre of the detector row when one shoulder of the 

signal shape is cut. 

 

 

 

 

 

 

 

 
 

The calculated source positions for the considered dwell times are presented in Figure 12. The longer the dwell time, the 

smaller is the difference between the stated and the calculated source position. 

 
Figure 12. Mean deviation of the stated to the 

calculated source position for different dwell times, 

when the source movement is included in the mea-

surement interval. The deviation goes asymptotical-

ly towards zero when the dwell time is increased. 

 

 

 

 

 

 

 

 

 

When the dwell time is 10 s, the measured and stated source positions agree within about 0.02 cm.  

 

3.4 Influence of the array switch on time 

For switch on times smaller than five minutes, the deviation between the measured and the stated source position is in a 

wider range than when the switch on time is 15 minutes (table 1). The mean deviation from the theoretical (stated by the 

afterloading device) source positions is -0.036 cm ± 0.010 cm and 0.046 cm ± 0.009 cm, when the switch on time is less 

than 5 min, it is 0.008 cm ± 0.007 cm, when it is more than 15 min. The mean absolute difference between the series is 

0.083 ± 0.004 cm, which is large when compared with other results presented here. The deviations are nevertheless 

clearly smaller than 2 mm, as required in the Swiss recommendations [6]. 
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Switch on time < 5 min 
Switch on time 

15min 

Theoretical 

position 

129.94 130.03 129.98 130.00 

127.97 128.05 128.01 128.00 

125.97 126.05 126.00 126.00 

123.96 124.04 124.00 124.00 

121.97 122.05 122.01 122.00 

119.97 120.05 120.01 120.00 

117.96 118.04 118.00 118.00 

115.97 116.06 116.01 116.00 

Table 1. Source positions [cm] depending on the switch on time of the 2D array. The measurement itself lasted about three minutes. 

The accuracy is better after a switch on time of 15 minutes (and more). 

4. DISCUSSION 

A 2D array based method to measure the dwell position of an afterloading device in a fast and accurate way has been 

presented. The accuracy was checked with different tests: The measurement method shows a strict linear correlation 

between the source position stated by the afterloading device and the measured source position. The mean deviation 

between the stated and the measured source position is 0.015 cm, independent on the position of the source relative to 

the adjacent detectors. It has been shown that the accuracy is not essentially reduced when the needle guiding plate is re-

mounted on the 2D array before a measurement is performed. 

Different details have to be considered when highest possible measurement accuracy should be achieved: In order that 

the guide wire is not coiled or wreathed, the catheter has to be arranged in a stretched position [12]. It is recommended to 

apply the measurement procedure which is shown in Figure 3. In this way the movement of the source, which would 

smear the profile shape, is excluded from the measurement interval. This is substantial especially for short acquisition 

times and when the source is placed outside the central area of the detector. It is recommended switching on the 2D array 

at minimum 15 minutes before measurements are performed. 

But, independent on these recommendations, the measurement method fulfills the requirements which are set for in-

stance in the Swiss recommendations [6]. 

5. CONCLUSION 

When a 2D array is available, the presented measurement method can be introduced with little effort. It is time effective 

and accurate. 

In the current version it is not supported to check also the dwell time and the source strength. The procedure can be in 

principle expanded as follows, however: 

Measurement of the source strength: The Perspex plate shown in Figure 1 and 2 is provided with a mechanism to fix a 

reference source with long half-life in a reproducible position, preferably in the centre of the 2D array. An acquisition 

is performed for one minute. Subsequently, a measurement with the afterloading source placed in the central area of 

the detector is performed for one minute, applying the procedure described in Figure 3. The “source strength”, as in-

troduced in equation (1), is evaluated for both measurements; SR and SA. (Alternatively, the sum of the detector signals 

can be used.) The ratio of these quantities, SA:SR, is independent on systematic variations as for instance temperature 

and air pressure. When the decay of the reference source is taken into account, SA:SR is proportional to the strength of 

the afterloader source. The proportionality factor is defined by a cross calibration, when the conventional measurement 

technique is used to define the source activity. 

Measurement of the dwell time: The dwell times provided by the afterloading system, t, do not include the time of source 

movement to the first source dwell position. The corresponding interfering signal, SM, appears as a constant offset to 

the integral signal, SA. Therefore, equation (7) is valid: 
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MA StcS    (7) 

When two single dwell position measurements with different dwell times, t1, t2 = 2 × t1, are performed, SM and the con-

stant c can be determined. Figure 4 implies that the SM contribution corresponds to the signal of a 0.5 to 1 s long dwell 

time. t1, specified in the afterloading software, is ideally 60 s. It is checked manually with a chronograph and confirms 

the absolute time value. This procedure is sufficient to check the timer absolute accuracy within 2%, as prescribed by the 

Swiss recommendations [6]. The linearity is checked with different dwell times, for instance 20, 10, 5, 2 and 1 s. 
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