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ABSTRACT

Purpose: Radiation pneumonitis (RP) is a potentially fatal side effect arising in lung cancer patients who receive
radiotherapy as part of their treatment. For the modeling of RP outcomes data, several predictive models based on
traditional statistical methods and machine learning techniques have been reported. However, no guidance to variation in
performance has been provided to date.

Materials and methods: In this study, we explore several machine learning algorithms for classification of RP data. The
performance of these classification algorithms is investigated in conjunction with several feature selection strategies and
the impact of the feature selection strategy on performance is further evaluated. The extracted features include patient’s
demographic, clinical and pathological variables, treatment techniques, and dose-volume metrics. In conjunction, we
have been developing an in-house Matlab-based open source software tool, called dose-response explorer system
(DREES), customized for modeling and exploring dose response in radiation oncology. This software has been upgraded
with a popular classification algorithm called support vector machine (SVM), which seems to provide improved
performance in our exploration analysis and has strong potential to strengthen the ability of radiotherapy modelers in
analyzing radiotherapy outcomes data. These tools are demonstrated on an institutional non-small cell lung carcinoma
(NSCLC) dataset of patients who received radiotherapy.

Results: Our methods were applied to an NSCLC dataset that consists of 209 patients’ information, each having 160
variables. Using several feature selection methods, relevant features were searched. Subsequently, with the selected
features, various classification algorithms were tested. Through these experiments, we showed the usefulness of machine
learning methods in the analysis of radiation oncology dataset.

Conclusions: We have presented an open-source software tool and several machine learning algorithms for analyzing
radiotherapy outcomes. We demonstrated the tool on a lung cancer patient dataset. We believe that the improved tool
will provide radiation oncology modelers with new means to analyze radiation response data.
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1. INTRODUCTION

Lung cancer is a leading cause of cancer-related death in both men and women in the world with a low five-year survival
rate of 15% (American Cancer Society 2008). Two main types of lung cancer are small cell lung carcinoma (SCLC) and
non-small cell lung carcinoma (NSCLC). Approximately, 80% of lung cancer cases are classified as NSCLC. About
50% of lung cancer patients receive radiotherapy in addition to or instead of surgery and it is the main treatment for
patients with advanced and inoperable stages (American Cancer Society 2008). One of the potentially fatal side effects
of radiotherapy in lung cancer is radiation-induced lung injury known as radiation pneumonitis (RP) that results from
over-dosage of surrounding normal tissues (Deasy et al. 2002; El Naqa et al. 2006a, 2006b; Spencer et al. 2009). Thus,
the optimization of treatment planning dose distributions is crucial for providing tumor tissues with sufficient doses
while sparing normal tissues from excessive radiation effects. Recent advances in radiotherapy and biotechnology such
as highly advanced 3D treatment planning systems provide new opportunities to precisely estimate tumor local control
probability and complication risk to surrounding normal tissues, which allows for not only improvements of tumor
localization and dose distribution but also individualized and patient-specific treatment planning decisions (Hope et al.
2006). Nevertheless, the lack of dedicated informatics tools for extracting and analyzing metrics that could be related to
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radiotherapy outcomes such as RP poses challenges for prediction of such effects and customization of treatment plan
design based on expected risk. We demonstrate the development of such tools in this study by comparing different
machine learning strategies for identification of factors that could be associated with RP. This process is composed of
three steps: (1) selecting relevant variables, (2) building appropriate classifiers based on supervised learning, and (3)
presenting robust tools to the radiation oncology community through our open-source software.

Proper feature selection is a major challenge in machine learning and is posed as the ability to select a subset of features
that will represent the dataset or distinguish one patients’ group from another group. The objectives of feature selection
are manifolds: to improve the learner (i.e., classifier) performance such as its accuracy or speed and to understand the
underlying process that generates the data. Feature selection strategies designed with different evaluation criteria are
mainly divided into two categories: the filter approach and the wrapper approach. The criteria used by these approaches
include distance measures (Bins & Draper 2001; Sebban & Nock 2002), dependency measures (Yu & Liu 2004),
consistency measures (Dash & Liu 2003; Lashkia & Anthony 2004), and information measures (Battiti 1994; Kwak &
Choi 2002). The filter method selects relevant feature subsets based upon characteristics of the data without involving
any classification algorithm. In contrast, the wrapper method employs a predetermined classification algorithm to
evaluate the quality of features. It tends to require intensive computations while it outperforms the filter method in
general. In order to use advantages of both the filter and wrapper methods, hybrid approaches have been also proposed.
These methods not only improve the performance but speed up the feature selection task. In a variety of bioinformatics
areas, the feature selection methods have been used, including sequence analysis (Salzberg et al. 1998; Delcher et al.
1999), microarray analysis (Alon et al. 1999; Ben-Dor et al. 2000; Golub et al. 1999), mass spectra analysis (Petricoin &
Liotta 2003; Oh et al. 2009), single nucleotide polymorphism (SNP) analysis (Daly et al. 2001), and text mining (Cohen
& Hersch 2005; Jensen, Saric & Bork 2006; Saeys, Inza & Larrafiaga 2007).

Classification is a problem of assigning a sample to a predefined class based on conditional features. Many common
classification techniques, including linear discriminate analysis (LDA), decision tree, neural networks, SVM, k-nearest
neighbor (kNN), and Bayesian classifiers, have been proposed in a variety of applications. LDA and SVM are two main
kinds of linear classifiers. That is, they seek to find a hyperplane for which one group can be correctly separated from
another group as much as possible (Lotte et al. 2007). SVM proposed by Vapnik and his colleagues is a novel approach
for solving classification problems. It is based on the structural risk minimization principle to minimize an upper bound
of the generalization error (Vapnik 1995; Jeng 2006).

A major part of our informatics efforts is focused towards providing better tools to the radiotherapy outcome analyst to
gain a more insightful understanding of complex variable interactions that affect outcome and support treatment
planning systems with improved predictive models of response. Therefore, we have upgraded our in-house software tool
DREES (dose-response explorer system) with several statistical and graphical tools; in particular, we have added a new
machine learning module based on SVM as discussed further below.

The remainder of this paper is organized as follows. In Sections 2 and 3, we introduce feature selection and classification
algorithms investigated in this study. In Section 4, we present a new version of DREES that is equipped with SVM.
Experimental results with dose-volume data in lung cancer are shown in Section 5. Finally, we summarize our
conclusions in Section 6.

2. FEATURE SELECTION TECHNIQUES

2.1 SVM-Recursive Feature Elimination (SVM-RFE)

SVM-RFE, proposed by Guyon et al., is a sequential backward feature elimination method based on SVM (Guyon et al.
2002). In SVM-RFE, features are ranked in a way that the least important feature is removed after iteratively training a
SVM classifier with existing features. To determine a feature to be eliminated at each iteration, the weights (w;) are
estimated (see below) and a feature with the smallest w;” value in the weight vector is removed.

2.2 Correlation based Feature Selection

A correlation based feature selection method measures correlations between features and tries to find the best feature
subset by using a heuristic search strategy in a manner of the forward best first search (Hall & Smith 1999). The
fundamental idea behind the method is that good features are highly correlated with the class, but uncorrelated with each
other. The evaluation function of a subset of features is:
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hr.
EV,=— 9 (1)
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where EV represents the heuristic evaluation of a feature subset S containing /4 features; Ty and Iy are the mean

feature-class correlation and the mean feature-feature intercorrelation, respectively.
2.3 Chi-square Feature Selection

A Chi-square feature selection method is a simple algorithm based on the y” statistic to discretize features repeatedly
until some inconsistencies are found in the data (Liu & Setiono 1995). As a result of discretization, the feature selection
is completed. The measure of the Chi-square is defined to be:

2k )
= ZZ )
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where, / /

k is the number of classes,

Aj; is the number of patterns in the ith interval, jth class,

k
R; is the number of patterns in the ith interval = ZFI Aij’

2
C; is the number of patterns in the jth class = . Ai].

2
N is the total number of patterns = ZH Ri,

Ej; is the expected frequency of 4; = R;xC/N.

2.4 Information Gain based Feature Selection

An information gain based feature selection is an algorithm based on information theory for feature selection in multi-
class problems. Let S be the set of instances from k classes, i.e., ¢, ¢, ..., ¢;. The entropy of the class distribution in S is
defined as follows:

ICI

K
1(S) = Z 3)
1S | | S|
Then, the information gain of instance set S based on attribute F; is calculated as
Gain(F,) =1(S)-1(S | F)), 4)
_ oS
=1(S) - ZTX 1(S))
=aN
where ¢ is the set of all the possible values of feature F;. The information gain reflects the reduction in uncertainty about

the overall class entropy when a certain feature F; is given. In other words, features with zero information gain indicate
the inability to reduce such uncertainty and should be removed (Oh et al. 2008).

3. CLASSIFICATION METHODS
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3.1 Support Vector Machine

SVM is a supervised learning algorithm, originally designed to solve two-class classification problems (Burges 1998; El
Nagqa et al. 2002; EI Naqa et al. 2009; Oh et al. 2006). The basic idea behind SVM is to find an optimal hyperplane for
which a given training data are well separated. It is achieved by maximizing the margin between the two classes after
mapping the training data x into a higher dimensional space via a mapping function ®(x). As a result, a decision function
is as follows:

S (x) =<w,D(x) > +b, (5)
where w is a weight vector and b is a scalar.
Suppose that there are n training samples {(x;, y;), 1 < i < n} where x; is the ith training sample consisting of an m-

dimensional feature vector and y,€{—1, 1} is the class label of x;. The problem of finding the optimal hyperplane can be
formulated as the following optimization problem

. 1 n
mm?mwMCZQ, (6)
i=1
subject to

yif(xi)ZI_gia é,izoa

where (; is a slack variable and C is a user defined soft-margin constant which regularizes the trade-off between training
error and margin maximization. This optimization problem can be solved in its Wolfe dual form with respect to
Lagrange multipliers and can be reduced to a quadratic programming problem:

' 1 n n n
m1nEZZaiajyiyjK(xi,xj)—Zan (7
i=1 j=l1 i=1

subject to

0<e,<C, D ay =0.
i=1

Here, we can compute the weight vector as w:

w = Zaiyim(xi), (8)

where o, is Lagrange multipliers and / is the number of support vectors. In Eq. (7), ®(x;)" d(x;) is substituted with a
kernel function K(x;X;) by the kernel trick. Note that for the linear case K(x;Xx;) = XxsX;,. Two typical kernels are
polynomial: K(x;x;) = (e + x,»-xj)d and radial basis function (RBF): K(x;,x;) = exp(=1/(26%)||x;— xj||2) where e, d, and o are
adjustable kernel function parameters (El Naqa, Bradley & Deasy 2008).

3.2 Decision Trees

A decision tree classifier has a hierarchical structure in which the data set is recursively partitioned until each partition
consists entirely or almost entirely of samples from one class. In the tree, leaf nodes represent classes and non-leaf nodes
indicate selected decision rules. Starting at the root node, one sample is evaluated by the decision rule. It keeps moving
down the tree branch until it reaches a leaf node. We used J48 that is implemented as a decision tree classifier in WEKA
(Witten & Frank 2005).

3.3 Random Forest

A random forest classifier is an ensemble of classification trees grown on bootstrap samples of the training data in
conjunction with a random feature selection in the tree induction process. Given a new input, each tree casts a vote and
the class having the most votes is chosen (Rodriguez, Kuncheva & Alonso 2006).
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3.4 Naive Bayes

In a naive Bayes classifier, it is assumed that all features are mutually independent given a class label, that is, each
feature has the class variable as its parent (Friedman, Geiger & Goldszmidt 1997). In practice, despite its simplified
assumption the naive Bayes classifier has often shown good performance compared to sophisticated classification
methods in a variety of applications. In the naive Bayes classifier, the most probable class is obtained by using the
Bayes’ theorem:

¢’ =argmax, p(e)= [ [ p(x, | ). 9)

i=1

<} Parameters for SVM E“:

hcocuracy = B0,8696% (14/23) (classification)
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(a) Parameters for SVM (b) The results of SVM classification
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Figure 1. SVM classification in DREES

4. DREES SOFTWARE

Towards fulfilling our objective to provide clinicians and scientists with an accurate, flexible and user-friendly tool to
explore radiotherapy outcomes data and model the statistical tumor control or normal tissue complication, we have
developed an open-source software called DREES that enables clinical researchers to customize the function for
radiotherapy outcome modeling (El Naqa et al. 2006b). DREES is available from http://radium.wustl.edu/drees/.
Recently, we incorporated a popular SVM code called LibSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm) into DREES
so that it can provide more powerful ability for the analysis of radiotherapy data (Chang & Lin 2001). Figure 1 illustrates
a screenshot of the interface for using SVM in DREES. The results of SVM classification are shown in ‘Command
Window’ of Matlab. In addition, new visual representation using SVM was developed as shown in Figure 1. The figure
shows the contour plot of SVM for two features, that is, the contour plot represents the kernel-based pneumonitis
nonlinear prediction model. The gray line indicates the hyperplane of the SVM classifier. The software is shared based
on the GNU General Public License (GPL) v3.
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Table 1. Top ranked 10 features for each feature selection strategy. For CFS, only 5 features were found by its criterion.

Ranking IG Chi-square SVM-RFE CFS
1 Followup Followup D10_heartMC COMSI
2 COMSI MOH10 heartMC V40 heartMC PerformanceStatus
3 V55 _heartMC MOHS5_heartMC V5 heartMC Followup
4 MOHS5_heartMC V55 _heartMC DCOMSI _heart D20 _lungMC
5 MOHI10_heartMC D5 _heartMC D55 lungMC MOHI10 heartMC
6 D10_heartMC COMSI maxDose
7 D35 lungMC D10 heartMC PerformanceStatus
8 D5 heartMC MOH20_heartMC V30 _heartMC
9 MOH20 heartMC D35 lungMC TimeAxis
10 MOH15_heartMC V65 _heartMC D15 _heartMC

Table 2. The performance when the correlation based feature selection is used.

Methods MCC Accuracy Sensitivity Specificity AUC
Naive Bayes 0.3881 0.7795 0.5253 0.8552 0.7615
Random Forest 0.2998 0.7671 0.3912 0.8790 0.6671
Decision Tree 0.2935 0.7944 0.2527 0.9555 0.5952
RBF-SVM 0.4131 0.7474 0.6957 0.7627 0.7292
P-SVM 0.4118 0.7362 0.7240 0.7400 0.7320
L-SVM 0.3222 0.6624 0.7300 0.6425 0.6863

5. EXPERIMENTAL RESULTS

5.1 The Data Set

7

In this study, we analyzed an NSCLC dataset that consists of information obtained from 209 patients at Washington
University School of Medicine, who had received radiotherapy with median doses around 70 Gy as part of their
treatment. The dose distribution was recalculated using Monte Carlo methods (MC). The number of patients diagnosed
with RP was 48 patients called the disease group. The remaining 161 patients belong to the control group. The data
obtained from each patient is composed of clinical features (age, gender, race, chemo, stage, smoke, treatment, etc.),
relative location of the tumor within the lung or nearby heart, and dosimetric features, including mean dose, maximum
dose, minimum dose, V, (volume getting at least x Gy), D, (minimum dose to the hottest x% volume), MOH, (mean dose
to the hottest x% volume), MOC, (mean dose to the coldest x% volume) and GEUD (generalized equivalent uniform
dose). In this study, we included heart related variables due to the fact that in the radiotherapy of lung cancer, a portion
of the heart is typically exposed to a relatively high dose of radiation that causes heart injury (Shafman et al. 2004).
Recently, Deasy et al. have reported that heart dose-volume metrics may play a role in RP (Deasy et al. 2008).
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Table 3. The performance when the Chi-square feature selection is used.

Mo, of features

Methods Measurements
1 2 3 4 5 6 7 3 ] 10
MCC -0.0117 -0.0121 0.1862 0.1769 0.2737 02831 0.2761 0.2888 0.2973 0.2960
Accuracy 0.7654 0.7650 0.7525 0.7150 0.6988 0.6853 0.6591 0.6502 0.6514 0.6693
MNaive Bayes Sensitivity 0.0000 0.0000 0.2398 0.3432 0.5573 0.6073 0.6572 0.7000 0.7123 0.6698
Specificity 0.9933 0.9929 0.9051 0.8258 0.7406 0.7083 0.6595 0.6351 0.6330 0.6691
ALC 0.6068 0.7008 0.7067 0.6698 0.6714 0.6929 0.6924 0.6926 0.6971 0.7060
MCC 01797 0.3337 02921 0.2828 0.2842 0.2648 0.2528 0.2468 0.2485 0.2488
Accuracy 0.7095 0.7689 0.7570 0.7548 0.7557 0.7538 07515 0.7496 0.7503 0.750
Random Forest Sensitivity 0.3643 0.4603 0.4214 0.4158 0.4078 0.3765 0.3660 0.3695 0.3623 0.3655
Specificity 0.8126 0.8610 0.8572 0.8557 0.8591 0.8661 0.8661 0.8627 0.8658 0.8646
AUC 0.6031 0.7181 0.6845 0.7020 0.6925 0.6704 0.6817 0.6789 0.6780 0.6794
MCC 0.3179 0.3116 0.3030 0.2984 0.2959 0.2811 0.2736 0.2713 0.2785 0.2779
Accuracy 0.8135 0.8100 0.8062 0.8029 0.8024 0.7956 0.7854 0.7879 0.7890 0.7889
Decision Tree Sensitivity 0.14968 0.2000 0.2013 0.2053 0.2060 0.2192 0.2383 0.2377 0.2465 0.2458
Specificity 0.9973 0.9917 0.9865 0.9809 0.9801 0.9673 0.9522 0.9518 0.9505 0.9505
AUC 0.5898 0.5924 0.5917 0.5925 0.5927 0.5907 0.5930 0.5938 0.5970 0.5969
MCC 0.1583 0.3609 0.3525 0.3430 0.3294 0.3283 0.3124 0.3107 0.3350 0.3361
Accuracy 0.6072 0.7363 07325 0.7310 0.7251 0.6489 0.6518 0.6556 0.6668 0.6699
RBF-SY¥M Sensitivity 0.5620 0.6250 0.6182 0.6012 0.5918 0.7708 0.7378 0.7268 0.7460 0.7413
Specificity 0.6208 0.7694 0.7664 0.7698 0.7648 0.6125 0.6260 0.6343 0.6432 0.6436
ALC 054914 06972 0.6923 0.6855 06783 06317 068149 0.6B06 0.6946 0.6949
MCC 0.1567 0.3653 0.3511 0.3403 0.3268 0.3303 03112 0.3205 0.3311 0.2877
Accuracy 0.6029 0.74048 0.7392 0.7299 0.7292 0.6529 0.6553 0.7232 0.6891 0.7148
P-5% Sensitivity 0.5692 0.6210 0.5973 0.6000 0.5738 0.7662 0.7288 0.5793 0.6893 0.5408
Specificity 0.6131 0.7760 0.7816 0.7686 0.7756 0.6191 0.6332 0.7658 0.6889 0.7664
AlUC 0.5912 0.6985 0.6895 0.6843 0.6747 0.6927 0.6810 0.6726 0.6891 0.6536
MCC 0.0913 0.2409 0.2780 0.2735 0.2687 0.2914 0.2793 0.2810 0.2546 0.2817
Accuracy 0.5436 0.58756 06376 0.6366 0.6350 0.6325 0.6340 0.6355 0.6358 0.6B6Y
L-5WM Sensitivity 0.5658 0.7553 0.7047 0.6992 0.6937 0.7387 0.7148 0.7148 0.6590 0.5992
Specificity 0.5398 0.5224 06175 0.6180 0.6176 0.6015 0.6096 06115 0.6345 0.7131
ALC 0.5528 0.6389 0.6611 0.6586 0.6556 0.6701 0.6627 0.6637 0.6468 0.6562

5.2 Machine Learning Methods

For analysis of the dataset, a variety of machine learning methods for feature selection and classification were tested. For
feature selection, information gain (IG) based feature selection, chi-square feature selection, correlation based feature
selection (CFS), and SVM-RFE were used. For classification, random forest (RF), naive Bayes (NB), decision tree (DT),
and SVM were employed. In SVM, the experiments were carried out changing parameters. The parameter values used in
this study are as follows: ¢ in radial basis function SVM (RBF-SVM) varies in {0.5, 1, 2, 3, 4, 5}; degree d and
coefficient e in polynomial SVM (P-SVM) vary in {1, 2, 3, 4} and {0, 1}, respectively; for C, {1, 10, 100} are set. By
combining these parameters, 18 RBF-SVMs, 24 P-SVMs, and 3 linear SVMs (L-SVMs) are formed. Since the dataset is
imbalanced in size, in SVMs weighting values of 3 and 1 were placed into the disease group and control group,
respectively.
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Table 4. The performance when SVM-RFE is used.

MNo. of features

Methods Measurements
1 2 3 4 a 1] T 8 9 10
MCC 0.0000 -0.0003 01069 01177 01686 01748 02241 0.22558 0.2376 0.2798
Accuracy 0.7705 0.73x 06858 06727 0.6897 0.6871 0.7203 0.7104 07152 0.70649
Maive Bayes Sensitivity 0.0000 0.0592 0.3058 0.3530 0.3945 0.3888 0.4085 0.4390 0.4465 0.54938
Specificity 1.0000 0.9339 0.7988 0.7676 077748 0.7890 0.8142 0.7913 0.7954 0.7537
AUC 0.6955 0.6456 06477 0.6506 0.6650 0.6730 0.7050 0.6951 0.6920 0.6913
MCC 0.0a05 01181 012490 0.0780 00321 0.0s18 01011 0.0943 0,273 027749
Accuracy 0.6676 0.6898 06941 0.6932 0.6812 07018 0.7029 0.6999 0.7670 0.7631
Random Forest Sensitivity 0.3040 03123 03212 0.2543 0.2073 0.2442 0.2585 0.2497 0.3603 0.3602
Specificity 0.7761 0.8027 0.804a3 0.82445 0.8229 0.8384 0.8358 0.8347 08881 0.8829
AUC 0.6053 0.6281 06250 0.6014 0.58245 0.6066 0.6099 0.6051 0.6904 0.69345
MCC 0.0271 0.0z207 0.0z208 0.02649 001749 0.0120 0.0132 0.0093 0.3798 0.3774
Accuracy 0.7631 0.7471 07473 0.7468 0.7420 0.7408 0.73749 0.73849 0.8028 0.8020
Decision Tree Sensitivity 0.0448 0.0683 0.0683 0.0762 0.0760 0.0700 0.0803 0.0753 0.3967 0.3947
Specificity 0.9767 0.9492 0.9494 0.9466 0.9404 0.9411 0.9338 0.9364 0.9233 09229
AUC 05108 0.5236 05238 058251 0.5362 0.5382 05332 058677 0.6664 0.6651
MCC 0.3032 03313 0.2870 0.2861 0.2942 0.2875 0.33649 0.3256 0.3734 0.36649
Arcuracy 0.6647 0.7424 0.7168 0.7060 0.6368 0.69496 0.7137 0.72648 0.7519 0.75048
RBF-5%M Sensitivity 0.6910 0.5403 0.5542 0.5608 0.7358 0.5882 0.6368 05823 0.54967 0.5897
Specificity 0.6580 0.8029 0.7654 0.7500 06072 0.7302 0.7368 0.7696 0.7983 0.7986
AUC 0.6745 06716 0.6598 0.6554 067148 0.6642 0.6868 0.6760 0.6975 0.6941
MCC 0.3074 0.3210 0.3324 0.3064 0.24971 0.3169 0.3494 0.3426 0.3928 0.3782
Accuracy 06710 0.74845 0.7395 07173 0.6371 07141 07418 0.7381 0.7642 0.75649
P-5%M Sensitivity 0.6875 05033 0.5563 0.5690 0.74048 0.5875 0.58548 05812 0.54960 05932
Specificity 0.6658 08217 0.7944 0.76148 06062 0.74492 0.7a8a 0.7852 0.8145 0.8058
AUC 0.6767 0.6625 067454 0.6652 0.6734 0.6734 0.6871 0.6832 0.7052 0.6995
MCC 02112 02123 02028 02828 0.2888 03181 0.3558 0.3456 0.3285 031497
Accuracy 058431 058421 0.5404 0.6429 0.6492 0.7163 07310 0.7276 0.6940 0.6986
L-5Whd Sensitivity 0.7663 0.7698 0.7578 0.7043 07022 0.5828 06233 0.6132 0.6653 0.6437
Specificity 0.4767 0.4744 047459 06244 06332 0.7534 0.7633 0.7619 0702y 07151
AUC 06215 06221 0.6169 0.6644 0.B66TT 06731 0.6933 0.6874 0.6840 0.6794
5.3 Performance Metric
Our comparative experiments were performed using the WEKA software package

(http://www.cs.waikato.ac.nz/ml/weka/). For the unbiased performance estimate, all measurements were averaged after
30 iterations of 10-fold cross-validation (CV) for each classification algorithm.

In the analysis of imbalanced data set, Matthew's correlation coefficient (MCC) is widely used as a performance
evaluation metric. MCC is calculated as follows:

TPxTN-FPxFN

r= (10)
J(TP+FP)(TP+ FN)(IN + FP)(TN + FN)

where TP and TN are the number of patients correctly classified in the disease and control group, and FN and FP are the
number of patients falsely classified in the disease and control group, respectively. r takes a real value in [-1.0, 1.0]. A
coefficient of +1 means a perfect classification. In contrast, —1 represents a perfect inverse prediction. A coefficient of
zero indicates an average random prediction. In addition, we measured accuracy, sensitivity, specificity, and AUC (area
under the ROC curve) as performance evaluation metrics. The accuracy, sensitivity and specificity are defined as
follows:
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TP+ TN TP TN
c= , Sen=—"—, Spe=——"—.
TP + FN+ TN + FP TP + FN TN + FP

Table 5. The performance when the information gain based feature selection is used.

(11)

MNo. of features

Methods Measurements

1 2 3 4 5 B 7 8 9 10
MCC 00117 00071 00500 DABST 02548 0.2800 02730 02048 0.2873  0.2862
Accuracy 0S4 07638 07478 07426 0722 06853 0BTST  OGB14 06514 0.5404
Naive Bayes Sensitivity 00000 00062 00923 02512 04562 06038 05113 06848 07123 07155
Specificity 09933 00895 00430 08893 08001 07094 05950 06543 06330 05170
AUC 0.60BE 06740 0BEST 06794 06884 0905 0BOE1 06077 0971 05972
MCC 04797 02624 01982 02240 02456 02446 0.2485 02417 02474 02372
Accuracy 07095 07458 07326 07421 07463 07400 07471 07464 0FS03 07485
Randam Forest Sensitivity 03643 03847 03270 03518 03670 03856 03703 03663 03602 0.3560
Specificity 08126 08534 08535 08580 08592 08632 0.8503 08584 0.86B2  0.9555
AUC 0603 06938 06395 06557  0BS61 06802 06786 06822 0BT 0676
MCC 03179 03288 03153 02818 02833 02730 02763 02782 02770 0.2790
Accuracy 08135 08158 08116 07983 07968 07EBT 07884 0700 07880 0.7803
Decision Tree Sensitivity 018E8 02062 04938 04980 02120 02367 02440 02467 02458 0.2472
Specificity 098973 00975 00957 00772 08710 09530 08503 08507 009505 0.8507
AUC 05808 05998 05985 05882 05865 05922 05067 05073 05954 0.5060
MCC 01583 03428 02814 03342 03200 03150 03221 03200 03350 0.3380
Accuracy 06072 07484 07147 06811 0B815 08T 05829 06621 0EGEE 05706
REF-SVM Sensitivity 05520 05448 05293 07135 06865 07078 0BBTT 07467 0T4ED 07452
Specificity 06208 08108 07698 06715 0680z 06571 06815 06368 06432 05482
AUC 05814 0BTTE 06495 06925 06834 06826 05846 06017 06946 0.BO6T
MCC 04567 03291 03003 03388 03279 03130 03187 03338 03310 0.3301
Accuracy 06028 0B815 06582 07256 06826 06575 06536 O6EBO  0E8H  0.5303
P-SVM Sensitivity 05602 06987 07033 06115 06983 0788 07447 06040 0683 05873
Specificity 0613 06767 06450 07584 06781 06362 06265 0674 06880 0.5807
AUC 05812 0BSTT 0674z 06855 06882 06826 06856 06007 0E8H1  0.5385
MG 00813 02934 02334 02851 02907 02807 02545 02572 02546 02543
Accuracy 05436 06998 06552 063B0 06352 06351 06306 06407 06390 05303
L5 Sensitivity 0558 06862 05000 07183 07332 07158 06592 06B18 0580 0.6507
Specificity 05308 07343 06745 06124 0B0BT 06111 0B341 06347 06345 0535
AUC 05528 0BE0Z 06323 06651 0BB97  06E34  DB466 06483 D4R D.B466

Table 6. The performance when all features without feature selection are used.

Methods MCC Accuracy Sensitivity Specificity AUC

Naive Bayes 0.2477 0.6411 0.6462 0.6399 0.6822
Random Forest 0.1562 0.7254 0.2850 0.8567 0.6401
Decision Tree 0.2564 0.7511 0.3730 0.8638 0.6191
RBF-SVM 0.2595 0.6388 0.6712 0.6298 0.6505
P-SVM 0.1568 0.6476 0.4758 0.6989 0.5874

L-SVM 0.1568 0.6476 0.4758 0.6989 0.5874
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5.4 Feature Selection and Classification

Table 1 displays the top ten features selected by the three feature selection algorithms. For CFS, only five features were
chosen by its criterion. It is worthy to note that some features were commonly found in different feature selection
methods. For example, 'Followup', 'COMSI' (center-of-mass of tumor location in the superior inferior direction), and
'"MOH10_heartMC' were selected in IG, Chi-square, and CFS. 'D10_heartMC' was found in IG, Chi-square, and SVM-
RFE. It suggests that the features are important for distinguishing the disease (RP) group from the control (no RP) group.

Table 2 through Table 5 show the performance in classification algorithms for four different feature selection strategies
with the top one, then the top two, and so forth up to the top ten features. Note that Table 2 illustrates the results obtained
using all five features that were searched by CFS. Interestingly, in all cases kernel SVMs (RBF-SVM and P-SVM)
achieved the best MCC on this dataset. In particular, with features found by SVM-RFE, the performance of RBF-SVM
and P-SVM outperformed considerably other methods. As shown in Table 2, the best MCC was obtained when CFS was
exploited with RBF-SVM, resulting in 0.4131. Also, P-SVM gained comparable MCC (0.4118). Table 6 shows the
MCC values when all features were used without feature selection. As can be seen in the table, in all cases MCC values
were much lower than those gained when only a few important features were utilized. It justifies the importance of
feature selection in classification algorithms. Figure 2 displays the maximum MCC values across all classification
algorithms for each feature selection method. The first bar in the figure represents the MCC value when all features were
used. The highest MCC value (0.4131) was achieved when RBF-SVM with C = 100, ¢ = 2, and the five features in
conjunction with CFS were employed. Also, accuracy, sensitivity, specificity, and AUC obtained with these parameters
were 74.74%, 69.57%, 76.27%, and 0.7292, respectively.

MCC

w/o FS CFsS Chi-sqaure (€] SVM-RFE
Feature Selection Methods

(a) The maximum MCC for each feature selection method

Feature Selection Max-MCC Method No. of features C o d e
w/o FS 0.2595 RBF-SVM 160 1 5
CFS 0.4131 RBF-SVM 5 100
Chi-square 0.3653 P-SVM 2 100 3 1
IG 0.3428 RBF-SVM 2 10 2
SVM-RFE 0.3928 P-SVM 9 100 3 1

(b) Parameter values used for achieving the maximum MCC

Figure 2. The comparison of the maximum MCC across all classification algorithms for each feature selection method. Note
that ‘w/o FS’ means ‘without feature selection’.
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6. CONCLUSION

We have compared the performance of different machine learning algorithms in identifying significant features that are
related to RP and could be used in building patients’ classification risk models of this disease. In our classification
experiments with the selected features, the kernel SVMs showed a higher MCC than not only linear SVM but also other
competing classification algorithms after correction for imbalance effect. It is our expectation that the application of
machine learning methods to the analysis of post-radiotherapy data will shed more light on a better understanding of
underlying mechanisms in normal tissue toxicities and advance the clinical translational goal of individualizing
radiotherapy in NSCLC patients. To support this goal, we have developed a graphical user interface (GUI) tool to
explore radiotherapy outcomes data and build data-driven statistical tumor control or normal tissue complications. We
will continue to develop DREES based on user’s feedback, as an informatics tool to aid medical physicists and clinical
researchers to build more predictive radiotherapy outcome models.
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